invoice_extraction_donut_fromv0_f21_ep20_0724

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1221
  • Char Accuracy: 0.6385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Char Accuracy
0.5942 1.0 2991 0.2929 0.4026
0.2355 2.0 5982 0.1610 0.4363
0.2194 3.0 8973 0.0913 0.2990
0.0696 4.0 11964 0.0879 0.3076
0.0896 5.0 14955 0.0761 0.4217
0.0355 6.0 17946 0.0893 0.6547
0.0321 7.0 20937 0.0761 0.5625
0.0262 8.0 23928 0.0877 0.5487
0.0284 9.0 26919 0.0890 0.7065
0.0295 10.0 29910 0.0823 0.6354
0.0383 11.0 32901 0.0893 0.6316
0.0203 12.0 35892 0.0957 0.5729
0.0003 13.0 38883 0.0929 0.5490
0.0056 14.0 41874 0.1008 0.5576
0.0037 15.0 44865 0.1109 0.6604
0.0203 16.0 47856 0.1168 0.6210
0.0019 17.0 50847 0.1209 0.6400
0.0051 18.0 53838 0.1223 0.6334
0.0 19.0 56829 0.1216 0.6325
0.0053 20.0 59820 0.1221 0.6385

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
0.2B params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for VVVVL/invoice_extraction_donut_fromv0_f21_ep20_0724

Finetuned
(475)
this model

Evaluation results