See axolotl config
axolotl version: 0.12.2
base_model: google/gemma-3-270m-it
# Automatically upload checkpoint and final model to HF
hub_model_id: abdullahmeda/pointwise-rerank-gemma-3-270m-it-ds0-oen48ghs
load_in_8bit: false
load_in_4bit: false
strict: false
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true
chat_template: gemma3
eot_tokens:
- <end_of_turn>
datasets:
- path: kaggle-map/pointwise-reranker
type: chat_template
split: train
test_datasets:
- path: kaggle-map/pointwise-reranker
type: chat_template
split: val
dataset_processes: 32
dataset_prepared_path: last_run_prepared
output_dir: ./outputs/pointwise-rerank-gemma-3-270m-it-ds0-oen48ghs
sequence_len: 1024
sample_packing: true
eval_sample_packing: false
deepspeed: deepspeed_configs/zero1.json
wandb_project: map-math-misconceptions
wandb_entity:
wandb_watch:
wandb_name: pointwise-rerank-gemma-3-270m-it-ds0-oen48ghs
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 16
num_epochs: 5
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 5e-6
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 10
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 3
saves_per_epoch: 3
weight_decay: 0.01
save_first_step: true # uncomment this to validate checkpoint saving works with your config
pointwise-rerank-gemma-3-270m-it-ds0-oen48ghs
This model is a fine-tuned version of google/gemma-3-270m-it on the kaggle-map/pointwise-reranker dataset. It achieves the following results on the evaluation set:
- Loss: 3.9502
- Memory/max Mem Active(gib): 55.94
- Memory/max Mem Allocated(gib): 55.94
- Memory/device Mem Reserved(gib): 70.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 92
- training_steps: 920
Training results
| Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 7.4394 | 43.55 | 43.55 | 43.79 |
| 0.1851 | 0.3358 | 62 | 4.8209 | 55.94 | 55.94 | 70.82 |
| 0.1584 | 0.6716 | 124 | 4.7051 | 55.94 | 55.94 | 70.82 |
| 0.1391 | 1.0054 | 186 | 4.4124 | 55.94 | 55.94 | 70.82 |
| 0.1123 | 1.3412 | 248 | 4.4912 | 55.94 | 55.94 | 70.82 |
| 0.1013 | 1.6770 | 310 | 4.2072 | 55.94 | 55.94 | 70.82 |
| 0.1002 | 2.0108 | 372 | 4.1081 | 55.94 | 55.94 | 70.82 |
| 0.0897 | 2.3466 | 434 | 3.9883 | 55.94 | 55.94 | 70.82 |
| 0.0829 | 2.6825 | 496 | 3.9694 | 55.94 | 55.94 | 70.82 |
| 0.0819 | 3.0162 | 558 | 3.9431 | 55.94 | 55.94 | 70.82 |
| 0.0713 | 3.3521 | 620 | 3.9944 | 55.94 | 55.94 | 70.82 |
| 0.0696 | 3.6879 | 682 | 3.9014 | 55.94 | 55.94 | 70.82 |
| 0.0713 | 4.0217 | 744 | 3.9357 | 55.94 | 55.94 | 70.82 |
| 0.0643 | 4.3575 | 806 | 3.9005 | 55.94 | 55.94 | 70.82 |
| 0.0652 | 4.6933 | 868 | 3.9502 | 55.94 | 55.94 | 70.82 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 4