YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
See axolotl config
axolotl version: 0.10.0
base_model: ./gemma
model_type: Gemma3ForCausalLM
model_quantization_config: null
load_in_4bit: false
load_in_8bit: false
# gemma3 doesn't seem to play nice with ddp
# ddp_find_unused_parameters: true
datasets:
- path: ./dataset/math_genie/
type:
system_prompt: ""
field_system: system
field_instruction: question
field_output: answer
format: "Question: {instruction}\nAnswer: "
no_input_format: "Question: {instruction}\nAnswer: "
ds_type: arrow
train_on_inputs: false
output_dir: ./outputs/gemma/math_genie_2
adapter: lora
lora_model_dir:
sequence_len: 1500
sample_packing: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 5
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 5e-5
bf16: true
fp16:
tf32: true
gradient_checkpointing: false
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
eager_attention:
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
outputs/gemma/math_genie_2
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 197
- training_steps: 1975
Training results
Framework versions
- PEFT 0.15.2
- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support