babylm-base7f5m-gpt2
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.9098
- Accuracy: 0.4842
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 185
- training_steps: 18500
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 5.3654 | 0.0952 | 200 | 4.7347 | 0.3484 |
| 4.5626 | 0.1905 | 400 | 4.3043 | 0.3641 |
| 4.3217 | 0.2857 | 600 | 4.1250 | 0.3711 |
| 4.1567 | 0.3810 | 800 | 4.0333 | 0.3738 |
| 4.1352 | 0.4762 | 1000 | 3.9608 | 0.3791 |
| 4.0176 | 0.5714 | 1200 | 3.9202 | 0.3804 |
| 3.9957 | 0.6667 | 1400 | 3.8617 | 0.3837 |
| 3.9308 | 0.7619 | 1600 | 3.8101 | 0.3895 |
| 3.886 | 0.8571 | 1800 | 3.7603 | 0.3946 |
| 3.7964 | 0.9524 | 2000 | 3.7185 | 0.3992 |
| 3.3605 | 1.9048 | 4000 | 3.4152 | 0.4256 |
| 3.0557 | 2.8571 | 6000 | 3.2015 | 0.4532 |
| 2.8541 | 3.8095 | 8000 | 3.0833 | 0.4663 |
| 2.7548 | 4.7619 | 10000 | 3.0094 | 0.4744 |
| 2.6384 | 5.7143 | 12000 | 2.9641 | 0.4786 |
| 2.6129 | 6.6667 | 14000 | 2.9363 | 0.4819 |
| 2.5034 | 7.6190 | 16000 | 2.9195 | 0.4830 |
| 2.485 | 8.5714 | 18000 | 2.9107 | 0.4841 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 9