Introduction
cognaize.ocr is a powerful, multilingual document parser that unifies layout detection and content recognition within a single vision-language model while maintaining good reading order. Despite its compact 1.7B-parameter LLM foundation, it achieves state-of-the-art(SOTA) performance.
- Powerful Performance: cognaize.ocr achieves SOTA performance for text, tables, and reading order on, while delivering formula recognition results comparable to much larger models like Doubao-1.5 and gemini2.5-pro.
- Multilingual Support: cognaize.ocr demonstrates robust parsing capabilities for low-resource languages, achieving decisive advantages across both layout detection and content recognition on our in-house multilingual documents benchmark.
- Unified and Simple Architecture: By leveraging a single vision-language model, cognaize.ocr offers a significantly more streamlined architecture than conventional methods that rely on complex, multi-model pipelines. Switching between tasks is accomplished simply by altering the input prompt, proving that a VLM can achieve competitive detection results compared to traditional detection models like DocLayout-YOLO.
- Efficient and Fast Performance: Built upon a compact 1.7B LLM, cognaize.ocr provides faster inference speeds than many other high-performing models based on larger foundations.
Usage with transformers
import torch
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer
from qwen_vl_utils import process_vision_info
from cognaize_ocr.utils import dict_promptmode_to_prompt
model_path = "./weights/CognaizeOCR"
model = AutoModelForCausalLM.from_pretrained(
model_path,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
image_path = "demo/demo_image1.jpg"
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path
},
{"type": "text", "text": prompt}
]
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=24000)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
- Downloads last month
- 14