Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Could not read the parquet files: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.
Error code:   FileSystemError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
mask
image
label
class label
image_name
string
1fake
000000579136_qwen120
1fake
000000579134_qwen120
1fake
000000579137_qwen120
1fake
000000579127_qwen180
1fake
000000579134_qwen180
1fake
000000579136_qwen180
1fake
000000579138_qwen120
1fake
000000579137_qwen180
1fake
000000579138_qwen180
1fake
000000579144_qwen120
1fake
000000579145_qwen180
1fake
000000579144_qwen180
1fake
000000579145_qwen120
1fake
000000579165_qwen120
1fake
000000579156_qwen120
1fake
000000579165_qwen180
1fake
000000579170_qwen180
1fake
000000579170_qwen120
1fake
000000579176_qwen180
1fake
000000579179_qwen180
1fake
000000579176_qwen120
1fake
000000579179_qwen120
1fake
000000579184_qwen180
1fake
000000579184_qwen120
1fake
000000579186_qwen120
1fake
000000579186_qwen180
1fake
000000579188_qwen120
1fake
000000579188_qwen180
1fake
000000579191_qwen120
1fake
000000579198_qwen120
1fake
000000579192_qwen120
1fake
000000579192_qwen180
1fake
000000579201_qwen120
1fake
000000579201_qwen180
1fake
000000579206_qwen180
1fake
000000579206_qwen120
1fake
000000579213_qwen180
1fake
000000579213_qwen120
1fake
000000579215_qwen120
1fake
000000579215_qwen180
1fake
000000579224_qwen120
1fake
000000579224_qwen180
1fake
000000579226_qwen180
1fake
000000579226_qwen120
1fake
000000579229_qwen120
1fake
000000579229_qwen180
1fake
000000579231_qwen120
1fake
000000579232_qwen120
1fake
000000579231_qwen180
1fake
000000579232_qwen180
1fake
000000579239_qwen120
1fake
000000579239_qwen180
1fake
000000579240_qwen180
1fake
000000579240_qwen120
1fake
000000579247_qwen120
1fake
000000579255_qwen120
1fake
000000579247_qwen180
1fake
000000579258_qwen180
1fake
000000579258_qwen120
1fake
000000579260_qwen120
1fake
000000579267_qwen120
1fake
000000579260_qwen180
1fake
000000579267_qwen180
1fake
000000579271_qwen120
1fake
000000579271_qwen180
1fake
000000579276_qwen120
1fake
000000579277_qwen120
1fake
000000579276_qwen180
1fake
000000579291_qwen120
1fake
000000579294_qwen120
1fake
000000579294_qwen180
1fake
000000579299_qwen120
1fake
000000579303_qwen120
1fake
000000579299_qwen180
1fake
000000579303_qwen180
1fake
000000579312_qwen120
1fake
000000579312_qwen180
1fake
000000579325_qwen120
1fake
000000579326_qwen120
1fake
000000579325_qwen180
1fake
000000579326_qwen180
1fake
000000579329_qwen120
1fake
000000579337_qwen120
1fake
000000579332_qwen180
1fake
000000579332_qwen120
1fake
000000579329_qwen180
1fake
000000579337_qwen180
1fake
000000579362_qwen180
1fake
000000579374_qwen120
1fake
000000579374_qwen180
1fake
000000579395_qwen180
1fake
000000579394_qwen120
1fake
000000579386_qwen180
1fake
000000579394_qwen180
1fake
000000579386_qwen120
1fake
000000579402_qwen120
1fake
000000579402_qwen180
1fake
000000579404_qwen120
1fake
000000579404_qwen180
1fake
000000579405_qwen120
End of preview.

DEAL-300K Dataset

DEAL-300K: Diffusion-based Editing Area Localization with a 300K-Scale Dataset and Frequency-Prompted Baseline

Paper Dataset

Overview

DEAL-300K is a large-scale dataset for Diffusion-based Image Manipulation Localization (DIML) containing over 300,000 annotated images. The dataset is specifically designed to address the challenges of localizing regions edited by diffusion models, which often blend seamlessly with original content.

Key Features

  • Scale: 330,979 training images, 3,989 validation images, and 5,500 test images
  • Annotation: Pixel-level segmentation masks for edited regions
  • Diversity: Covers a broad range of manipulations involving humans, animals, and objects
  • Quality: Automated annotation pipeline using SAM-CD (Segment Anything Model with Change Detection)

Dataset Structure

The dataset is stored in Parquet format for efficient loading and compatibility with Hugging Face Datasets:

train-00000-of-00067.parquet  # Training set (67 files)
train-00001-of-00067.parquet
...
val-00000-of-00001.parquet    # Validation set (1 file)
test-00000-of-00002.parquet   # Test set (2 files)
test-00001-of-00002.parquet

Data Fields

Field Type Description
image PIL.Image RGB image (512×384 or similar resolution)
mask PIL.Image Grayscale binary mask (L mode)
label ClassLabel 0=real, 1=fake
image_name string Original filename

Mask Details:

  • For real images: all-black mask (pixel value 0)
  • For fake images: segmentation mask of edited regions (white=255=edited, black=0=original)

Dataset Statistics

Split Real Images Fake Images Total Parquet Files
Train 115,814 215,165 330,979 67
Val 1,656 2,333 3,989 1
Test 1,901 3,599 5,500 2
Total 119,371 221,097 340,468 70

Usage

Loading from Hugging Face Hub (Recommended)

from datasets import load_dataset

# Load the full dataset
dataset = load_dataset("FlyHorseJ/DEAL-300K")

# Or load specific splits
train_dataset = dataset["train"]
val_dataset = dataset["val"]
test_dataset = dataset["test"]

# Access a sample
sample = train_dataset[0]
image = sample["image"]   # PIL Image (RGB)
mask = sample["mask"]     # PIL Image (grayscale mask)
label = sample["label"]   # 0 (real) or 1 (fake)
name = sample["image_name"]  # Original filename

PyTorch DataLoader Example

from torch.utils.data import DataLoader
from torchvision import transforms
import torch

def collate_fn(batch):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize((512, 512))
    ])
    
    images = []
    masks = []
    labels = []
    
    for item in batch:
        images.append(transform(item["image"]))
        masks.append(transform(item["mask"]))
        labels.append(item["label"])
    
    return {
        "images": torch.stack(images),
        "masks": torch.stack(masks),
        "labels": torch.tensor(labels)
    }

# Load dataset from Hugging Face Hub
dataset = load_dataset("FlyHorseJ/DEAL-300K")

# Create DataLoader
train_loader = DataLoader(
    dataset["train"], 
    batch_size=32, 
    shuffle=True,
    collate_fn=collate_fn,
    num_workers=4
)

Visualization Example

import matplotlib.pyplot as plt
import numpy as np
from datasets import load_dataset

# Load from Hugging Face Hub
dataset = load_dataset("FlyHorseJ/DEAL-300K")

sample = dataset["train"][0]
fig, axes = plt.subplots(1, 3, figsize=(15, 5))

# Original image
axes[0].imshow(sample["image"])
axes[0].set_title(f"Image ({'Real' if sample['label'] == 0 else 'Fake'})")
axes[0].axis('off')

# Mask
axes[1].imshow(sample["mask"], cmap='gray')
axes[1].set_title("Mask")
axes[1].axis('off')

# Overlay
img_array = np.array(sample["image"])
mask_array = np.array(sample["mask"].convert('RGB'))
overlay = (img_array * 0.7 + mask_array * 0.3).astype(np.uint8)

axes[2].imshow(overlay)
axes[2].set_title("Overlay")
axes[2].axis('off')

plt.tight_layout()
plt.show()

Dataset Generation Pipeline

  1. Instruction Generation: Fine-tuned Qwen-VL generates editing instructions for MS COCO images
  2. Image Editing: InstructPix2Pix performs mask-free editing based on instructions
  3. Annotation: SAM-CD (Segment Anything Model with Change Detection) generates pixel-level masks

Comparison with Existing Datasets

Dataset Year Source Images Edited Images Image Size Scenario Generative Model
CoCoGlide 2023 512 512 256×256 General GLIDE (Mask-Required)
AutoSplice 2023 2,273 3,621 256×256–4232×4232 General DALL-E2 (Mask-Required)
MagicBrush 2023 5,313 10,388 1024×1024 General DALL-E2 (Mask-Required)
Repaint-P2/CelebA-HQ 2024 10,800 41,472 256×256 Face Repaint (Mask-Required)
DEAL-300K 2025 119,371 221,097 128×512–512×576 General InstructPix2Pix (Mask-Free)

Citation

If you use this dataset in your research, please cite:

@article{zhang2025deal300k,
  title={DEAL-300K: Diffusion-based Editing Area Localization with a 300K-Scale Dataset and Frequency-Prompted Baseline},
  author={Zhang, Rui and Wang, Hongxia and Liu, Hangqing and Zhou, Yang and Zeng, Qiang},
  journal={arXiv preprint arXiv:2511.23377},
  year={2025}
}

Contact

For questions or issues about the dataset, please:

License

This dataset is released for academic research purposes. Please refer to the original MS COCO and MagicBrush licenses for usage restrictions.

Related Links

Downloads last month
219

Paper for FlyHorseJ/DEAL-300K