pretty_name: OmniCellTOSG
dataset_name: omnicelltosg
dataset_summary: >
OmniCellTOSG is a large-scale Text–Omic Signaling Graph (TOSG) dataset for
single-cell learning.
It integrates sharded expression matrices, graph topology (full/internal/PPI
edges), and textual
entity metadata (names, descriptions, sequences) with optional precomputed
embeddings. It supports
graph-aware pretraining and downstream tasks such as cell-type annotation,
disease status, and gender classification.
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
multilinguality:
- monolingual
source_datasets:
- original
- external
size_categories:
- '>1M'
task_categories:
- other
task_ids:
- multi-label-classification
- explanation-generation
tags:
- single-cell
- transcriptomics
- foundation-models
license: other
license_url:
- https://cellxgene.cziscience.com/tos
- https://doi.org/10.1038/s41591-024-03150-z
- https://www.ncbi.nlm.nih.gov/geo/info/citations.html#third-party
homepage: https://github.com/FuhaiLiAiLab/OmniCellTOSG
repository: https://github.com/FuhaiLiAiLab/OmniCellTOSG
paper: https://arxiv.org/pdf/2504.02148
point_of_contact: Heming Zhang
dataset_type: multimodal-graph
configs:
- config_name: default
data_files: cell_metadata_with_mappings.csv
pretty_format: true
OmniCellTOSG
🧭 Overview
OmniCellTOSG is a large-scale Text–Omic Signaling Graph (TOSG) resource for single-cell foundation model pretraining and omics analysis. It combines:
- Expression matrices (sharded
.npyfor scalable IO) - Graph topology (full, internal, and PPI edges)
- Textual metadata (entity names, descriptions, sequences) with precomputed embeddings
Supported tasks include graph–language foundation model pretraining, cell-type annotation, disease status and gender classification, plus core signaling inference.
📁 Dataset Structure
OmniCellTOSG_Dataset/
├── expression_matrix/
│ ├── braincellatlas_brain_part_0.npy
│ ├── braincellatlas_brain_part_1.npy
│ ├── cellxgene_blood_part_0.npy
│ ├── cellxgene_blood_part_1.npy
│ ├── cellxgene_lung_part_0.npy
│ ├── cellxgene_small_intestine_part_0.npy
│ └── ... (additional *.npy shards)
├── cell_metadata_with_mappings.csv
├── cell_metadata_with_mappings.parquet
├── edge_index.npy
├── internal_edge_index.npy
├── ppi_edge_index.npy
├── s_bio.csv
├── s_desc.csv
├── s_name.csv
├── x_bio_emb.npy
├── x_desc_emb.npy
└── x_name_emb.csv
Notes:
- Files in
expression_matrix/*.npyare sharded partitions of single-cell expression matrices; merge shards (concatenate/stack) to reconstruct the full matrix for a given source/organ.cell_metadata_with_mappings.csvcontains standardized per-cell annotations (e.g., tissue, disease, sex, cell type, ontology mappings).edge_index.npy,s_bio.csv,s_name.csv, ands_desc.csvprovide the graph topology (COO[2, E]) and entity metadata (biological sequences, names, descriptions).x_bio_emb.npy,x_desc_emb.npy, andx_name_emb.csvare precomputed entity embeddings ([#entities × D], encoder-dependent) aligned to the CSVs—use these to skip on-the-fly embedding.
⚙️ Installation
If you only need dataset loading/extraction, download the standalone loader package from the Releases page.
🚀 Quick Start
from CellTOSG_Loader import CellTOSGDataLoader
conditions = {"tissue_general": "brain", "disease_name": "Alzheimer's Disease"}
ddataset = CellTOSGDataLoader(
root=args.dataset_root,
conditions=conditions,
task=args.task, # "disease" | "gender" | "cell_type"
label_column=args.label_column, # "disease" | "gender" | "cell_type"
sample_ratio=args.sample_ratio, # mutually exclusive with sample_size
sample_size=args.sample_size,
shuffle=args.shuffle,
stratified_balancing=args.stratified_balancing,
extract_mode=args.extract_mode, # "inference" | "train"
random_state=args.random_state,
train_text=args.train_text,
train_bio=args.train_bio,
correction_method=args.correction_method, # None | "combat_seq"
output_dir=args.output_dir,
)
# --- Access outputs ---
if args.extract_mode == "inference":
X = dataset.data # pandas.DataFrame (expression/features)
y = dataset.labels # pandas.DataFrame
metadata = dataset.metadata # pandas.DataFrame (row-aligned metadata)
else:
X = dataset.data # dict: {"train": X_train, "test": X_test}
y = dataset.labels # dict: {"train": y_train, "test": y_test}
metadata = dataset.metadata # dict: {"train": meta_train, "test": meta_test}
all_edge_index = dataset.edge_index # full graph (COO [2, E])
internal_edge_index = dataset.internal_edge_index # optional transcript–protein edges
ppi_edge_index = dataset.ppi_edge_index # optional PPI edges
x_name_emb, x_desc_emb, x_bio_emb = pre_embed_text(args, dataset, pretrain_model, device) # Prepare text and seq embeddings
Parameters (CellTOSGDataLoader)
- root (str, required) — Filesystem path to the dataset root (e.g.,
../OmniCellTOSG/CellTOSG_dataset_v2). - conditions (dict, required) — Metadata filters used to subset rows
(e.g.,{"tissue_general": "brain", "disease": "Alzheimer's disease"}). - task (str, required) — Downstream task type:
"disease"|"gender"|"cell_type". - label_column (str, required) — Target label column (e.g.,
"disease","gender","cell_type"). - extract_mode (str, required) — Extraction mode:
"inference": extract a single dataset for inference/analysis (no train/test split)"train": extract a training-ready dataset and generate splits (e.g., train/test)
- sample_ratio (float, optional) — Fraction of rows to sample (0–1). Mutually exclusive with
sample_size. - sample_size (int, optional) — Absolute number of rows to sample. Mutually exclusive with
sample_ratio. - shuffle (bool, default:
False) — Shuffle rows during sampling/composition. - stratified_balancing (bool, default:
False) — Enable stratified sampling / class balancing based onlabel_column. - random_state (int, default:
2025) — Random seed for reproducibility (sampling, shuffling, splitting). - train_text (bool, default:
False) — Controls text feature output:False: return precomputed text embeddings (if available)True: return raw text fields for custom embedding
- train_bio (bool, default:
False) — Controls biological sequence feature output:False: return precomputed sequence embeddings (if available)True: return raw sequences for custom embedding
- correction_method (str or None, default:
None) — Correction method:None: no correction"combat_seq": apply ComBat-Seq
- output_dir (str, optional) — Directory for loader outputs (extracted expression matrix, label,splits).
Returns:
extract_mode="inference":
dataset.data:pandas.DataFramedataset.labels:pandas.DataFramedataset.metadata:pandas.DataFrameextract_mode="train":
dataset.data:dict({"train": X_train, "test": X_test})dataset.labels:dict({"train": y_train, "test": y_test})dataset.metadata:dict({"train": meta_train, "test": meta_test})edge_index,internal_edge_index,ppi_edge_index: graph topological information- Either raw text/sequence fields (
s_name,s_desc,s_bio) or their precomputed embeddings (x_name_emb,x_desc_emb,x_bio_emb), returned according to thetrain_text/train_bioflags.
🧪 Pretraining
python pretrain.py
🏋️ Training Examples (CLI)
Disease status (AD, brain)
# Alzheimer's Disease (Take AD as an example)
python train.py \
--downstream_task disease \
--label_column disease \
--tissue_general brain \
--disease_name "Alzheimer's Disease" \
--sample_ratio 0.1 \
--train_base_layer gat \
--train_lr 0.0005 \
--train_batch_size 3 \
--random_state 42 \
--dataset_output_dir ./Data/train_ad_disease_0.1_42
Gender (AD, brain)
# Alzheimer's Disease (Take AD as an example)
python train.py \
--downstream_task gender \
--label_column gender \
--tissue_general brain \
--disease_name "Alzheimer's Disease" \
--sample_ratio 0.1 \
--train_base_layer gat \
--train_lr 0.0005 \
--train_batch_size 2 \
--random_state 42 \
--dataset_output_dir ./Data/train_ad_gender_0.1_42
Cell type annotation (LUAD, lung)
# Lung (LUAD) (Take LUAD as an example)
python train.py \
--downstream_task cell_type \
--label_column cell_type \
--tissue_general "lung" \
--disease_name "Lung Adenocarcinoma" \
--sample_ratio 0.2 \
--train_base_layer gat \
--train_lr 0.0001 \
--train_batch_size 3 \
--random_state 42 \
--dataset_output_dir ./Data/train_luad_celltype_0.2_42
Signaling inference
python analysis.py
⚖️ Licensing & Attribution
This dataset aggregates data from CellxGENE, the Brain Cell Atlas, GEO and HCA. Use of these resources is governed by their respective terms and citation policies:
CellxGENE Terms of Service — Follow the platform’s ToS for data access, reuse, and sharing.
🔗 https://cellxgene.cziscience.com/tosBrain Cell Atlas (citation required)
Cite:
Xinyue Chen#, Yin Huang#, Liangfeng Huang#, Ziliang Huang#, Zhao-Zhe Hao#, Lahong Xu, Nana Xu, Zhi Li, Yonggao Mou, Mingli Ye, Renke You, Xuegong Zhang, Sheng Liu*, Zhichao Miao*. A brain cell atlas integrating single-cell transcriptomes across human brain regions. Nat Med (2024). https://doi.org/10.1038/s41591-024-03150-zGEO Citation Policy — Follow NCBI GEO guidelines for citing datasets and third-party analyses.
🔗 https://www.ncbi.nlm.nih.gov/geo/info/citations.html#third-partyHCA Data Use Agreement
🔗 https://data.humancellatlas.org/about/data-use-agreement
Note: You are responsible for ensuring compliance with the licenses/terms and for providing appropriate attribution to each source in any publications or derived works.
📚 Citation
If you use OmniCellTOSG, please cite:
@misc{omnicelltosg2025,
title = {OmniCellTOSG: A Text–Omic Signaling Graph Dataset for Single-Cell Learning},
author = {Zhang, Heming and Li, Fuhai and collaborators},
year = {2025},
note = {Dataset on Hugging Face},
url = {https://huggingface.co/FuhaiLiAiLab}
}