File size: 4,369 Bytes
5c6e045
 
 
 
81fe67e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6e045
 
 
 
 
 
 
 
 
 
d6a2ae1
 
 
 
 
 
 
81fe67e
 
 
 
 
 
 
 
 
 
5c6e045
 
0850dcd
81fe67e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a22b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0850dcd
5c6e045
0850dcd
5c6e045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: cc-by-nc-sa-4.0
---

# IROS-2025-Challenge-Manip
# Dataset Summary πŸ“– 

This dataset contains the **IROS Challenge - Manipulation Track** benchmark, organized into **pretrain**, **train**, and **validation** splits.

* **Pretrain split**: \~20,000 single pick-and-place trajectories, packaged into tar files (each containing \~1,000 trajectories).
* **Train split**: task-specific demonstrations, with \~100 trajectories provided per task.
* **Validation split**: includes the test-time scenes and object assets in **USD format**.

Each trajectory in the pretrain and train splits contains:

* **Multi-view video** recordings (three perspectives: head-mounted camera and two wrist cameras)
* **Robot states** (joint positions, gripper states, etc.)
* **Actions** corresponding to the task execution

This dataset is designed to support **pretraining, task-specific fine-tuning, and evaluation** for robotic manipulation in the IROS Challenge setting.

# Get started πŸ”₯    
## Download the Dataset 
To download the full dataset, you can use the following code. If you encounter any issues, please refer to the official Hugging Face documentation.
```python
from huggingface_hub import snapshot_download

dataset_path = snapshot_download("InternRobotics/IROS-2025-Challenge-Manip", repo_type="dataset")
```

Please execute this Python file to post-process the validation set.  
```bash
cd IROS-2025-Challenge-Manip
python dataset_post_processing.py validation
````


## Unzip the pretrain dataset

```bash
cd pretrain
for i in {1..20}; do
    echo "Extracting $i.tar.gz ..."
    tar -xzf "$i.tar.gz"
done
```


## Dataset Structure

### pretrain Folder hierarchy
```
pretrain
β”œβ”€β”€ 1.tar.gz
β”‚   └── 1/
β”‚       β”œβ”€β”€ data/
β”‚       β”œβ”€β”€ meta/
β”‚       └── videos/
β”œβ”€β”€ 2.tar.gz
β”‚   └── 2/
β”‚       β”œβ”€β”€ data/
β”‚       β”œβ”€β”€ meta/
β”‚       └── videos/
...
β”œβ”€β”€ 20.tar.gz
    └── 20/
        β”œβ”€β”€ data/
        β”œβ”€β”€ meta/
        └── videos/

```
        

### train Folder hierarchy
```
train
β”œβ”€β”€ collect_three_glues
β”‚Β Β  β”œβ”€β”€ data/
β”‚Β Β  β”œβ”€β”€ meta/
β”‚Β Β  └── videos/
β”œβ”€β”€ collect_two_alarm_clocks/
β”œβ”€β”€ collect_two_shoes/
β”œβ”€β”€ gather_three_teaboxes/
β”œβ”€β”€ make_sandwich/
β”œβ”€β”€ oil_painting_recognition/
β”œβ”€β”€ organize_colorful_cups/
β”œβ”€β”€ purchase_gift_box/
β”œβ”€β”€ put_drink_on_basket/
└── sort_waste/

```

### validation Folder hierarchy
```
validation
β”œβ”€β”€ IROS_C_V3_Aloha_seen
β”‚Β Β  β”œβ”€β”€ collect_three_glues
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 000
β”‚Β Β  β”‚Β Β  β”‚Β Β  β”œβ”€β”€ meta_info.pkl
β”‚Β Β  β”‚Β Β  β”‚Β Β  β”œβ”€β”€ scene.usd
β”‚Β Β  β”‚Β Β  β”‚Β Β  └── SubUSDs -> ../SubUSDs
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 001/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 002/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 003/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 004/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 005/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 006/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 007/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 008/
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ 009/
β”‚Β Β  β”‚Β Β  └── SubUSDs
β”‚Β Β  β”‚Β Β      β”œβ”€β”€ materials/
β”‚Β Β  β”‚Β Β      └── textures/
β”‚Β Β  β”œβ”€β”€ collect_two_alarm_clocks/
β”‚Β Β  β”œβ”€β”€ collect_two_shoes/
β”‚Β Β  β”œβ”€β”€ gather_three_teaboxes/
β”‚Β Β  β”œβ”€β”€ make_sandwich/
β”‚Β Β  β”œβ”€β”€ oil_painting_recognition/
β”‚Β Β  β”œβ”€β”€ organize_colorful_cups/
β”‚Β Β  β”œβ”€β”€ purchase_gift_box/
β”‚Β Β  β”œβ”€β”€ put_drink_on_basket/
β”‚Β Β  └── sort_waste/
└── IROS_C_V3_Aloha_unseen
    β”œβ”€β”€ collect_three_glues/
    β”œβ”€β”€ collect_two_alarm_clocks/
    β”œβ”€β”€ collect_two_shoes/
    β”œβ”€β”€ gather_three_teaboxes/
    β”œβ”€β”€ make_sandwich/
    β”œβ”€β”€ oil_painting_recognition/
    β”œβ”€β”€ organize_colorful_cups/
    β”œβ”€β”€ purchase_gift_box/
    β”œβ”€β”€ put_drink_on_basket/
    └── sort_waste/

```

# License and Citation
All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Please consider citing our project if it helps your research.

```BibTeX
@misc{contributors2025internroboticsrepo,
  title={IROS-2025-Challenge-Manip Colosseum},
  author={IROS-2025-Challenge-Manip Colosseum contributors},
  howpublished={\url{https://github.com/internrobotics/IROS-2025-Challenge-Manip}},
  year={2025}
}
```