File size: 4,369 Bytes
5c6e045 81fe67e 5c6e045 d6a2ae1 81fe67e 5c6e045 0850dcd 81fe67e 46a22b0 0850dcd 5c6e045 0850dcd 5c6e045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
license: cc-by-nc-sa-4.0
---
# IROS-2025-Challenge-Manip
# Dataset Summary π
This dataset contains the **IROS Challenge - Manipulation Track** benchmark, organized into **pretrain**, **train**, and **validation** splits.
* **Pretrain split**: \~20,000 single pick-and-place trajectories, packaged into tar files (each containing \~1,000 trajectories).
* **Train split**: task-specific demonstrations, with \~100 trajectories provided per task.
* **Validation split**: includes the test-time scenes and object assets in **USD format**.
Each trajectory in the pretrain and train splits contains:
* **Multi-view video** recordings (three perspectives: head-mounted camera and two wrist cameras)
* **Robot states** (joint positions, gripper states, etc.)
* **Actions** corresponding to the task execution
This dataset is designed to support **pretraining, task-specific fine-tuning, and evaluation** for robotic manipulation in the IROS Challenge setting.
# Get started π₯
## Download the Dataset
To download the full dataset, you can use the following code. If you encounter any issues, please refer to the official Hugging Face documentation.
```python
from huggingface_hub import snapshot_download
dataset_path = snapshot_download("InternRobotics/IROS-2025-Challenge-Manip", repo_type="dataset")
```
Please execute this Python file to post-process the validation set.
```bash
cd IROS-2025-Challenge-Manip
python dataset_post_processing.py validation
````
## Unzip the pretrain dataset
```bash
cd pretrain
for i in {1..20}; do
echo "Extracting $i.tar.gz ..."
tar -xzf "$i.tar.gz"
done
```
## Dataset Structure
### pretrain Folder hierarchy
```
pretrain
βββ 1.tar.gz
β βββ 1/
β βββ data/
β βββ meta/
β βββ videos/
βββ 2.tar.gz
β βββ 2/
β βββ data/
β βββ meta/
β βββ videos/
...
βββ 20.tar.gz
βββ 20/
βββ data/
βββ meta/
βββ videos/
```
### train Folder hierarchy
```
train
βββ collect_three_glues
βΒ Β βββ data/
βΒ Β βββ meta/
βΒ Β βββ videos/
βββ collect_two_alarm_clocks/
βββ collect_two_shoes/
βββ gather_three_teaboxes/
βββ make_sandwich/
βββ oil_painting_recognition/
βββ organize_colorful_cups/
βββ purchase_gift_box/
βββ put_drink_on_basket/
βββ sort_waste/
```
### validation Folder hierarchy
```
validation
βββ IROS_C_V3_Aloha_seen
βΒ Β βββ collect_three_glues
βΒ Β βΒ Β βββ 000
βΒ Β βΒ Β βΒ Β βββ meta_info.pkl
βΒ Β βΒ Β βΒ Β βββ scene.usd
βΒ Β βΒ Β βΒ Β βββ SubUSDs -> ../SubUSDs
βΒ Β βΒ Β βββ 001/
βΒ Β βΒ Β βββ 002/
βΒ Β βΒ Β βββ 003/
βΒ Β βΒ Β βββ 004/
βΒ Β βΒ Β βββ 005/
βΒ Β βΒ Β βββ 006/
βΒ Β βΒ Β βββ 007/
βΒ Β βΒ Β βββ 008/
βΒ Β βΒ Β βββ 009/
βΒ Β βΒ Β βββ SubUSDs
βΒ Β βΒ Β βββ materials/
βΒ Β βΒ Β βββ textures/
βΒ Β βββ collect_two_alarm_clocks/
βΒ Β βββ collect_two_shoes/
βΒ Β βββ gather_three_teaboxes/
βΒ Β βββ make_sandwich/
βΒ Β βββ oil_painting_recognition/
βΒ Β βββ organize_colorful_cups/
βΒ Β βββ purchase_gift_box/
βΒ Β βββ put_drink_on_basket/
βΒ Β βββ sort_waste/
βββ IROS_C_V3_Aloha_unseen
βββ collect_three_glues/
βββ collect_two_alarm_clocks/
βββ collect_two_shoes/
βββ gather_three_teaboxes/
βββ make_sandwich/
βββ oil_painting_recognition/
βββ organize_colorful_cups/
βββ purchase_gift_box/
βββ put_drink_on_basket/
βββ sort_waste/
```
# License and Citation
All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Please consider citing our project if it helps your research.
```BibTeX
@misc{contributors2025internroboticsrepo,
title={IROS-2025-Challenge-Manip Colosseum},
author={IROS-2025-Challenge-Manip Colosseum contributors},
howpublished={\url{https://github.com/internrobotics/IROS-2025-Challenge-Manip}},
year={2025}
}
``` |