Dataset Viewer
Auto-converted to Parquet Duplicate
level
stringclasses
5 values
input_text
stringlengths
41
4.77k
output_text
stringlengths
7
76
very_easy
3 3 1 3.33 5.0 3.33 5.0 10.0 5.0 3.33 5.0 3.33
2 2 10.0
very_easy
3 3 1 2.33 3.5 2.33 3.5 7.0 3.5 2.33 3.5 2.33
2 2 7.0
very_easy
3 3 1 3.0 4.5 3.0 4.5 9.0 4.5 3.0 4.5 3.0
2 2 9.0
very_easy
3 3 1 4.0 2.67 2.0 8.0 4.0 2.67 4.0 2.67 2.0
2 1 8.0
very_easy
3 3 1 2.33 3.5 7.0 1.75 2.33 3.5 1.4 1.75 2.33
1 3 7.0
very_easy
3 3 1 1.4 1.75 2.33 1.75 2.33 3.5 2.33 3.5 7.0
3 3 7.0
very_easy
3 3 1 3.0 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5
1 2 6.0
very_easy
3 3 1 10.0 5.0 3.33 5.0 3.33 2.5 3.33 2.5 2.0
1 1 10.0
very_easy
3 3 1 5.0 3.33 2.5 10.0 5.0 3.33 5.0 3.33 2.5
2 1 10.0
very_easy
3 3 1 3.0 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5
1 2 6.0
very_easy
3 3 1 3.0 4.5 9.0 2.25 3.0 4.5 1.8 2.25 3.0
1 3 9.0
very_easy
3 3 1 4.5 9.0 4.5 3.0 4.5 3.0 2.25 3.0 2.25
1 2 9.0
very_easy
3 3 1 9.0 4.5 3.0 4.5 3.0 2.25 3.0 2.25 1.8
1 1 9.0
very_easy
3 3 1 10.0 5.0 3.33 5.0 3.33 2.5 3.33 2.5 2.0
1 1 10.0
very_easy
3 3 1 2.33 3.5 7.0 1.75 2.33 3.5 1.4 1.75 2.33
1 3 7.0
very_easy
3 3 1 3.0 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5
1 2 6.0
very_easy
3 3 1 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5 1.2
1 1 6.0
very_easy
3 3 1 4.5 3.0 2.25 9.0 4.5 3.0 4.5 3.0 2.25
2 1 9.0
very_easy
3 3 1 2.5 1.67 1.25 5.0 2.5 1.67 2.5 1.67 1.25
2 1 5.0
very_easy
3 3 1 2.5 5.0 2.5 1.67 2.5 1.67 1.25 1.67 1.25
1 2 5.0
very_easy
3 3 1 4.5 3.0 2.25 9.0 4.5 3.0 4.5 3.0 2.25
2 1 9.0
very_easy
3 3 1 9.0 4.5 3.0 4.5 3.0 2.25 3.0 2.25 1.8
1 1 9.0
very_easy
3 3 1 3.33 5.0 10.0 2.5 3.33 5.0 2.0 2.5 3.33
1 3 10.0
very_easy
3 3 1 1.5 2.0 3.0 2.0 3.0 6.0 1.5 2.0 3.0
2 3 6.0
very_easy
3 3 1 3.33 5.0 10.0 2.5 3.33 5.0 2.0 2.5 3.33
1 3 10.0
very_easy
3 3 1 3.0 2.0 1.5 6.0 3.0 2.0 3.0 2.0 1.5
2 1 6.0
very_easy
3 3 1 1.4 1.75 2.33 1.75 2.33 3.5 2.33 3.5 7.0
3 3 7.0
very_easy
3 3 1 2.25 3.0 2.25 3.0 4.5 3.0 4.5 9.0 4.5
3 2 9.0
very_easy
3 3 1 5.0 3.33 2.5 10.0 5.0 3.33 5.0 3.33 2.5
2 1 10.0
very_easy
3 3 1 2.67 4.0 2.67 4.0 8.0 4.0 2.67 4.0 2.67
2 2 8.0
very_easy
3 3 1 1.5 2.0 3.0 2.0 3.0 6.0 1.5 2.0 3.0
2 3 6.0
very_easy
3 3 1 1.6 2.0 2.67 2.0 2.67 4.0 2.67 4.0 8.0
3 3 8.0
very_easy
3 3 1 2.0 1.5 1.2 3.0 2.0 1.5 6.0 3.0 2.0
3 1 6.0
very_easy
3 3 1 1.75 2.33 3.5 2.33 3.5 7.0 1.75 2.33 3.5
2 3 7.0
very_easy
3 3 1 1.2 1.5 2.0 1.5 2.0 3.0 2.0 3.0 6.0
3 3 6.0
very_easy
3 3 1 3.33 2.5 2.0 5.0 3.33 2.5 10.0 5.0 3.33
3 1 10.0
very_easy
3 3 1 3.0 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5
1 2 6.0
very_easy
3 3 1 3.33 2.5 2.0 5.0 3.33 2.5 10.0 5.0 3.33
3 1 10.0
very_easy
3 3 1 2.5 1.67 1.25 5.0 2.5 1.67 2.5 1.67 1.25
2 1 5.0
very_easy
3 3 1 2.33 1.75 1.4 3.5 2.33 1.75 7.0 3.5 2.33
3 1 7.0
very_easy
3 3 1 5.0 10.0 5.0 3.33 5.0 3.33 2.5 3.33 2.5
1 2 10.0
very_easy
3 3 1 3.33 5.0 10.0 2.5 3.33 5.0 2.0 2.5 3.33
1 3 10.0
very_easy
3 3 1 2.33 1.75 1.4 3.5 2.33 1.75 7.0 3.5 2.33
3 1 7.0
very_easy
3 3 1 2.25 3.0 2.25 3.0 4.5 3.0 4.5 9.0 4.5
3 2 9.0
very_easy
3 3 1 1.75 2.33 1.75 2.33 3.5 2.33 3.5 7.0 3.5
3 2 7.0
very_easy
3 3 1 3.0 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5
1 2 6.0
very_easy
3 3 1 3.33 5.0 3.33 5.0 10.0 5.0 3.33 5.0 3.33
2 2 10.0
very_easy
3 3 1 4.5 3.0 2.25 9.0 4.5 3.0 4.5 3.0 2.25
2 1 9.0
very_easy
3 3 1 2.0 2.67 4.0 2.67 4.0 8.0 2.0 2.67 4.0
2 3 8.0
very_easy
3 3 1 2.0 3.0 6.0 1.5 2.0 3.0 1.2 1.5 2.0
1 3 6.0
very_easy
3 3 1 2.33 3.5 7.0 1.75 2.33 3.5 1.4 1.75 2.33
1 3 7.0
very_easy
3 3 1 3.5 2.33 1.75 7.0 3.5 2.33 3.5 2.33 1.75
2 1 7.0
very_easy
3 3 1 1.67 2.5 1.67 2.5 5.0 2.5 1.67 2.5 1.67
2 2 5.0
very_easy
3 3 1 1.25 1.67 2.5 1.67 2.5 5.0 1.25 1.67 2.5
2 3 5.0
very_easy
3 3 1 4.5 9.0 4.5 3.0 4.5 3.0 2.25 3.0 2.25
1 2 9.0
very_easy
3 3 1 2.67 4.0 8.0 2.0 2.67 4.0 1.6 2.0 2.67
1 3 8.0
very_easy
3 3 1 2.0 3.0 6.0 1.5 2.0 3.0 1.2 1.5 2.0
1 3 6.0
very_easy
3 3 1 2.0 2.67 2.0 2.67 4.0 2.67 4.0 8.0 4.0
3 2 8.0
very_easy
3 3 1 2.5 3.33 5.0 3.33 5.0 10.0 2.5 3.33 5.0
2 3 10.0
very_easy
3 3 1 2.5 3.33 5.0 3.33 5.0 10.0 2.5 3.33 5.0
2 3 10.0
very_easy
3 3 1 2.25 3.0 2.25 3.0 4.5 3.0 4.5 9.0 4.5
3 2 9.0
very_easy
3 3 1 2.0 2.5 3.33 2.5 3.33 5.0 3.33 5.0 10.0
3 3 10.0
very_easy
3 3 1 2.5 3.33 2.5 3.33 5.0 3.33 5.0 10.0 5.0
3 2 10.0
very_easy
3 3 1 2.5 1.67 1.25 5.0 2.5 1.67 2.5 1.67 1.25
2 1 5.0
very_easy
3 3 1 2.5 1.67 1.25 5.0 2.5 1.67 2.5 1.67 1.25
2 1 5.0
very_easy
3 3 1 3.0 4.5 9.0 2.25 3.0 4.5 1.8 2.25 3.0
1 3 9.0
very_easy
3 3 1 2.0 2.67 2.0 2.67 4.0 2.67 4.0 8.0 4.0
3 2 8.0
very_easy
3 3 1 2.0 3.0 2.0 3.0 6.0 3.0 2.0 3.0 2.0
2 2 6.0
very_easy
3 3 1 4.0 8.0 4.0 2.67 4.0 2.67 2.0 2.67 2.0
1 2 8.0
very_easy
3 3 1 5.0 10.0 5.0 3.33 5.0 3.33 2.5 3.33 2.5
1 2 10.0
very_easy
3 3 1 1.8 2.25 3.0 2.25 3.0 4.5 3.0 4.5 9.0
3 3 9.0
very_easy
3 3 1 3.0 2.25 1.8 4.5 3.0 2.25 9.0 4.5 3.0
3 1 9.0
very_easy
3 3 1 2.5 3.33 5.0 3.33 5.0 10.0 2.5 3.33 5.0
2 3 10.0
very_easy
3 3 1 1.8 2.25 3.0 2.25 3.0 4.5 3.0 4.5 9.0
3 3 9.0
very_easy
3 3 1 2.33 1.75 1.4 3.5 2.33 1.75 7.0 3.5 2.33
3 1 7.0
very_easy
3 3 1 1.2 1.5 2.0 1.5 2.0 3.0 2.0 3.0 6.0
3 3 6.0
very_easy
3 3 1 2.25 3.0 4.5 3.0 4.5 9.0 2.25 3.0 4.5
2 3 9.0
very_easy
3 3 1 2.25 3.0 2.25 3.0 4.5 3.0 4.5 9.0 4.5
3 2 9.0
very_easy
3 3 1 2.0 2.67 2.0 2.67 4.0 2.67 4.0 8.0 4.0
3 2 8.0
very_easy
3 3 1 2.33 3.5 2.33 3.5 7.0 3.5 2.33 3.5 2.33
2 2 7.0
very_easy
3 3 1 2.33 1.75 1.4 3.5 2.33 1.75 7.0 3.5 2.33
3 1 7.0
very_easy
3 3 1 3.0 2.25 1.8 4.5 3.0 2.25 9.0 4.5 3.0
3 1 9.0
very_easy
3 3 1 3.0 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5
1 2 6.0
very_easy
3 3 1 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5 1.2
1 1 6.0
very_easy
3 3 1 3.0 4.5 9.0 2.25 3.0 4.5 1.8 2.25 3.0
1 3 9.0
very_easy
3 3 1 2.67 2.0 1.6 4.0 2.67 2.0 8.0 4.0 2.67
3 1 8.0
very_easy
3 3 1 2.67 4.0 8.0 2.0 2.67 4.0 1.6 2.0 2.67
1 3 8.0
very_easy
3 3 1 1.8 2.25 3.0 2.25 3.0 4.5 3.0 4.5 9.0
3 3 9.0
very_easy
3 3 1 1.67 1.25 1.0 2.5 1.67 1.25 5.0 2.5 1.67
3 1 5.0
very_easy
3 3 1 1.5 2.0 1.5 2.0 3.0 2.0 3.0 6.0 3.0
3 2 6.0
very_easy
3 3 1 10.0 5.0 3.33 5.0 3.33 2.5 3.33 2.5 2.0
1 1 10.0
very_easy
3 3 1 2.0 2.5 3.33 2.5 3.33 5.0 3.33 5.0 10.0
3 3 10.0
very_easy
3 3 1 3.0 4.5 3.0 4.5 9.0 4.5 3.0 4.5 3.0
2 2 9.0
very_easy
3 3 1 1.0 1.25 1.67 1.25 1.67 2.5 1.67 2.5 5.0
3 3 5.0
very_easy
3 3 1 2.0 2.67 2.0 2.67 4.0 2.67 4.0 8.0 4.0
3 2 8.0
very_easy
3 3 1 1.0 1.25 1.67 1.25 1.67 2.5 1.67 2.5 5.0
3 3 5.0
very_easy
3 3 1 8.0 4.0 2.67 4.0 2.67 2.0 2.67 2.0 1.6
1 1 8.0
very_easy
3 3 1 4.0 8.0 4.0 2.67 4.0 2.67 2.0 2.67 2.0
1 2 8.0
very_easy
3 3 1 3.0 6.0 3.0 2.0 3.0 2.0 1.5 2.0 1.5
1 2 6.0
very_easy
3 3 1 2.67 4.0 8.0 2.0 2.67 4.0 1.6 2.0 2.67
1 3 8.0
End of preview. Expand in Data Studio

ThermBench πŸ”₯ β€” Thermal Heatmap Source Localization Benchmark

πŸ“ Summary

ThermBench is a physics-inspired synthetic dataset designed to evaluate algorithms that infer hidden thermal sources from an observed heat diffusion map.

Each data sample contains:

  • an observed heatmap (matrix of values),
  • and the ground-truth sources: (row, col, intensity).

Diffusion follows inverse Manhattan distance:

[ H(i,j) ;=; \sum_{s=1}^{K} \frac{I_s}{d(i,j,s)+1} ]

where (d) is the Manhattan distance to source (s).


πŸ“Š Dataset Structure

  • level: Difficulty tier (very_easy, easy, medium, hard, extreme)
  • input_text: Heatmap formatted as:
    N M
    K
    <N rows of values>
    
  • output_text: True source positions and intensities in format:
    row col intensity
    

Example

{
  "level": "easy",
  "input_text": "5 5\n2\n10 8 6 5 4\n8 10 7 6 5\n6 7 10 7 6\n5 6 7 10 8\n4 5 6 8 10",
  "output_text": "1 1 10.0\n5 5 10.0"
}

πŸš€ Usage

from datasets import load_dataset

dataset = load_dataset(
    "ZoneTwelve/Thermal-Heatmap-Source-Localization",
    split="train"
)
print(dataset[0])

🎚 Difficulty Levels

  • very_easy β†’ 3Γ—3 grid, 1 source
  • easy β†’ 5Γ—5 grid, 2 sources
  • medium β†’ 10Γ—10 grid, 3 sources
  • hard β†’ 20Γ—20 grid, 5 sources
  • extreme β†’ 30Γ—30 grid, 7 sources

Each level contains 100 samples β†’ 500 total.

A fuzzy extension of ThermBench introduces noise, intensity jitter, and rounding differences to simulate real‑world sensor readings.


πŸ”§ Intended Applications

  • Benchmarking inverse problem solvers
  • Robustness studies for optimization/AI
  • Educational resource for algorithm development

πŸ“œ License

Apache License 2.0 Β© ZoneTwelve

Downloads last month
19