Dataset Viewer
Auto-converted to Parquet Duplicate
customer_key
int64
101
50.1k
customer_id
int64
987k
1.04M
country
stringclasses
2 values
city
stringlengths
2
28
registration_date
timestamp[ns]date
2020-08-18 00:00:00
2025-08-18 00:00:00
customer_segment
stringclasses
5 values
lifetime_value
float64
50
15k
total_orders
int64
1
99
days_since_last_order
int64
1
729
101
987,000
India
45
2024-05-07T00:00:00
High-Value
14,309.74
61
16
102
987,001
India
Unknown
2024-01-22T00:00:00
Regular
446.81
7
37
103
987,002
USA
Unknown
2025-07-04T00:00:00
New
820.47
8
3
104
987,003
USA
Unknown
2022-05-17T00:00:00
Regular
200.08
11
71
105
987,004
India
184
2023-01-29T00:00:00
Churn-Risk
286.64
12
619
106
987,005
USA
PSC 8779
2024-01-11T00:00:00
Regular
722.41
2
3
107
987,006
USA
Unknown
2023-07-30T00:00:00
New
655.48
8
52
108
987,007
USA
Unknown
2023-09-17T00:00:00
High-Value
10,359.17
54
79
109
987,008
USA
Unknown
2021-03-06T00:00:00
Sleeper
100.7
13
552
110
987,009
India
Unknown
2025-03-20T00:00:00
Regular
125.54
1
31
111
987,010
USA
Unknown
2022-07-26T00:00:00
Sleeper
350.27
8
227
112
987,011
India
Unknown
2023-03-29T00:00:00
Sleeper
901.22
12
494
113
987,012
USA
Unknown
2022-05-11T00:00:00
New
542.98
12
10
114
987,013
USA
Unknown
2020-10-06T00:00:00
Churn-Risk
536.8
12
596
115
987,014
USA
Unknown
2021-03-16T00:00:00
High-Value
10,278.74
73
83
116
987,015
USA
Unknown
2021-11-20T00:00:00
New
157.51
5
38
117
987,016
India
Unknown
2020-09-11T00:00:00
Regular
96.49
3
70
118
987,017
USA
Unknown
2022-09-07T00:00:00
Churn-Risk
674.11
5
469
119
987,018
India
Unknown
2022-03-10T00:00:00
Sleeper
620.43
3
432
120
987,019
India
63/94
2021-03-06T00:00:00
Sleeper
202.04
6
489
121
987,020
India
Unknown
2024-01-03T00:00:00
Regular
643.78
10
52
122
987,021
USA
Unknown
2020-11-18T00:00:00
New
864.48
13
34
123
987,022
India
Unknown
2021-03-25T00:00:00
New
940.99
8
47
124
987,023
USA
Unknown
2023-07-05T00:00:00
Regular
746
6
22
125
987,024
USA
Unknown
2024-10-15T00:00:00
Sleeper
63.61
5
360
126
987,025
USA
Unknown
2025-05-17T00:00:00
Regular
515.81
4
84
127
987,026
USA
Unknown
2024-12-10T00:00:00
Regular
749.05
10
78
128
987,027
India
Unknown
2021-10-03T00:00:00
Regular
185.59
2
40
129
987,028
India
Unknown
2021-10-08T00:00:00
Sleeper
768.44
2
462
130
987,029
USA
PSC 2589
2025-06-16T00:00:00
Sleeper
900.89
3
131
131
987,030
USA
Unknown
2024-09-07T00:00:00
Regular
539.84
1
25
132
987,031
India
Unknown
2023-03-16T00:00:00
Regular
504.5
11
13
133
987,032
USA
Unknown
2020-11-30T00:00:00
Regular
139.62
9
80
134
987,033
India
26/148
2025-04-24T00:00:00
Regular
452.4
9
18
135
987,034
India
Unknown
2024-04-26T00:00:00
High-Value
1,407.87
65
78
136
987,035
India
Unknown
2025-01-21T00:00:00
Regular
344.95
4
5
137
987,036
India
Unknown
2022-11-06T00:00:00
Churn-Risk
252.42
2
715
138
987,037
USA
Unknown
2022-11-23T00:00:00
Regular
618.85
3
33
139
987,038
USA
Unknown
2023-07-25T00:00:00
Sleeper
206.45
8
228
140
987,039
India
19/122
2021-12-20T00:00:00
New
812.88
2
10
141
987,040
India
Unknown
2025-03-11T00:00:00
New
745.26
14
30
142
987,041
India
Unknown
2021-03-07T00:00:00
Sleeper
842.76
4
296
143
987,042
USA
Unknown
2021-05-18T00:00:00
Regular
142.57
1
75
144
987,043
USA
Unknown
2021-05-31T00:00:00
New
570.73
12
70
145
987,044
USA
Unknown
2022-02-28T00:00:00
New
732.19
7
87
146
987,045
USA
Unknown
2022-10-08T00:00:00
New
940.87
4
22
147
987,046
USA
Unknown
2022-12-02T00:00:00
Sleeper
688.2
7
306
148
987,047
USA
Unknown
2024-01-11T00:00:00
Regular
652.34
3
28
149
987,048
USA
Unknown
2021-12-15T00:00:00
Regular
83.59
5
45
150
987,049
USA
Unknown
2024-05-20T00:00:00
Regular
867.92
1
47
151
987,050
USA
Unknown
2021-02-03T00:00:00
Churn-Risk
327.88
4
245
152
987,051
USA
Unknown
2022-08-08T00:00:00
New
709.72
7
43
153
987,052
USA
Unknown
2020-11-15T00:00:00
Regular
746.75
1
57
154
987,053
USA
Unknown
2024-08-12T00:00:00
Regular
153.23
1
36
155
987,054
USA
Unknown
2021-08-18T00:00:00
Sleeper
245.42
4
317
156
987,055
USA
Unknown
2022-05-29T00:00:00
High-Value
3,815.56
45
30
157
987,056
India
Unknown
2021-01-31T00:00:00
High-Value
4,170.87
54
62
158
987,057
USA
Unknown
2025-02-02T00:00:00
Sleeper
243.28
10
246
159
987,058
USA
Unknown
2023-03-18T00:00:00
High-Value
3,554.39
69
57
160
987,059
India
Unknown
2023-10-10T00:00:00
High-Value
8,774.83
70
28
161
987,060
USA
Unknown
2025-04-30T00:00:00
Regular
208.3
4
26
162
987,061
USA
Unknown
2020-10-01T00:00:00
Regular
61.73
12
50
163
987,062
India
Unknown
2022-11-30T00:00:00
High-Value
3,362.61
87
34
164
987,063
India
Unknown
2022-05-03T00:00:00
Regular
106.81
2
9
165
987,064
India
Unknown
2022-07-19T00:00:00
High-Value
1,510.56
70
43
166
987,065
USA
Unknown
2023-02-26T00:00:00
High-Value
10,214.55
82
43
167
987,066
USA
Unknown
2021-05-07T00:00:00
High-Value
3,887.34
49
67
168
987,067
USA
Unknown
2021-06-10T00:00:00
Regular
819.68
3
49
169
987,068
USA
Unknown
2021-08-31T00:00:00
Regular
249.15
7
15
170
987,069
India
Unknown
2022-05-26T00:00:00
New
599.61
12
37
171
987,070
USA
Unknown
2023-05-31T00:00:00
New
666.67
3
44
172
987,071
India
Unknown
2023-11-28T00:00:00
Sleeper
269.33
6
116
173
987,072
India
Unknown
2024-01-02T00:00:00
Regular
60.18
12
47
174
987,073
USA
Unknown
2021-05-21T00:00:00
New
322.65
2
2
175
987,074
USA
Unknown
2023-05-21T00:00:00
New
161.1
1
64
176
987,075
USA
Unknown
2024-08-14T00:00:00
Sleeper
60.45
8
644
177
987,076
USA
Unknown
2022-11-21T00:00:00
Churn-Risk
497.97
11
483
178
987,077
India
Unknown
2024-07-26T00:00:00
Sleeper
413.78
4
637
179
987,078
USA
Unknown
2023-06-23T00:00:00
Sleeper
682.52
14
449
180
987,079
India
Unknown
2025-04-30T00:00:00
New
379.74
4
25
181
987,080
India
43/411
2022-10-16T00:00:00
New
952.89
1
60
182
987,081
USA
Unknown
2021-11-15T00:00:00
New
142.14
10
79
183
987,082
USA
Unknown
2025-02-09T00:00:00
Churn-Risk
847.62
13
550
184
987,083
USA
Unknown
2020-10-20T00:00:00
High-Value
11,354.54
57
73
185
987,084
USA
Unknown
2023-11-07T00:00:00
Churn-Risk
661.73
1
416
186
987,085
USA
Unknown
2021-06-15T00:00:00
Churn-Risk
579.24
5
618
187
987,086
USA
Unknown
2023-10-14T00:00:00
New
111.31
11
9
188
987,087
India
05/544
2021-10-17T00:00:00
Regular
562.41
2
69
189
987,088
India
Unknown
2023-06-08T00:00:00
High-Value
13,711.73
75
51
190
987,089
USA
Unknown
2020-12-16T00:00:00
High-Value
13,918.39
57
29
191
987,090
USA
Unknown
2024-06-28T00:00:00
New
640.49
4
89
192
987,091
USA
PSC 5433
2020-11-24T00:00:00
Regular
475.04
9
86
193
987,092
USA
Unknown
2023-07-26T00:00:00
Churn-Risk
277.93
6
720
194
987,093
India
Unknown
2021-11-20T00:00:00
Churn-Risk
383.2
12
583
195
987,094
India
Unknown
2023-01-03T00:00:00
High-Value
7,591.16
41
52
196
987,095
USA
Unknown
2024-05-31T00:00:00
Sleeper
605.79
14
659
197
987,096
India
Unknown
2025-02-24T00:00:00
Regular
535.72
7
71
198
987,097
India
Unknown
2023-04-11T00:00:00
New
622.23
7
5
199
987,098
India
Unknown
2022-07-08T00:00:00
New
397.83
5
55
200
987,099
India
Unknown
2024-03-05T00:00:00
High-Value
10,199.95
50
73
End of preview. Expand in Data Studio

GloboMart: A Synthetic Retail Analytics Dataset

Dataset Summary

GloboMart is a comprehensive, synthetic dataset simulating five years of operations for a fictional global retailer. It's designed to provide a realistic and analytically deep resource for data analysts, scientists, and engineers. 📊

The dataset captures the entire customer journey, from marketing interactions and web engagement to sales transactions and final fulfillment. This end-to-end scope enables a wide range of analyses to answer critical business questions, such as:

  • Marketing: How effective are our campaigns? (Dim_Marketing, Fact_Web_Analytics)
  • Web Engagement: What is the user behavior on our website? (Fact_Web_Analytics)
  • Profitability: What are the main drivers of sales and profit? (Fact_Sales)
  • Logistics: How can we improve supply chain efficiency? (Dim_Shipments)

This dataset is ideal for practicing SQL, developing BI dashboards, and building predictive models in a realistic retail context.


Schema and Data Structure

Star Schema Architecture

The data warehouse is structured as a classic star schema, which is optimized for high-performance analytical queries. This design features central Fact tables (containing quantitative transactional data) that are connected to surrounding Dimension tables (containing descriptive, contextual attributes).

Star Schema

File Structure and Tables

The dataset is provided in the Apache Parquet format for efficient storage and fast read performance. It consists of the following tables:

  • Dimension Tables (Stored as single Parquet files):

    • dim_customers.parquet: Detailed information about each customer.
    • dim_date.parquet: A date dimension to facilitate time-based analysis.
    • dim_marketing.parquet: Data on marketing campaigns.
    • dim_products.parquet: Attributes for each product, such as category.
    • dim_shipments.parquet: Information related to order fulfillment and shipping.
    • dim_stores.parquet: Details about each retail store location.
  • Fact Tables (Partitioned by year and month for scalability):

    • fact_sales/: Contains all individual sales transaction records.
    • fact_web_analytics/: Records of user sessions and events on the website.

The partitioned structure of the fact tables (/year=YYYY/month=MM/) allows for efficient querying of specific time periods, as data loaders can prune partitions without reading the entire dataset.


How to Use the Dataset

You can easily load the tables using the 🤗 datasets library. First, ensure you have the necessary libraries installed:

pip install datasets pyarrow

Loading a Dimension Table

Dimension tables are single files and can be loaded directly.

from datasets import load_dataset

# The Hugging Face repository ID
repo_id = "ajay-anil-kumar/Globo-Mart"

# Load the products dimension table
products_ds = load_dataset(repo_id, data_files="globomart_dataset/dim_products.parquet")

print("Products Table Schema:")
print(products_ds['train'].features)
print("\nFirst Product Record:")
print(products_ds['train'][0])

Loading a Partitioned Fact Table

The datasets library can automatically load all partitions of a fact table by using a glob pattern.

from datasets import load_dataset

repo_id = "ajay-anil-kumar/Globo-Mart"

# Load the entire 'fact_sales' table by pointing to all .parquet files within the directory
sales_ds = load_dataset(repo_id, data_files="globomart_dataset/fact_sales/**/*.parquet")

print(f"Total sales records: {sales_ds['train'].num_rows}")
print("\nFirst Sales Record:")
print(sales_ds['train'][0])

Dataset Creation

The dataset was programmatically generated using a Python-based simulation engine to ensure temporal consistency and analytical realism. The simulation ran on a day-by-day basis over a five-year period, incorporating realistic business patterns:

  • Seasonality: Sales volumes for relevant product categories (e.g., ‘Electronics’) were increased in corresponding quarters (e.g., Q4).

  • Event-Driven Spikes: Sales were multiplied on weekends and holidays to simulate peak shopping periods.

  • Customer & Product Popularity: A power-law distribution was used to ensure a realistic concentration of sales among a small number of popular customers and products.

  • Correlated Events: Website conversion events in Fact_Web_Analytics are directly linked to transactional records in Fact_Sales, creating a coherent user journey.

Additional Information

Licensing

This dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Citation

If you use this dataset in your work, please consider citing it:

@misc{ajay_anil_kumar_2025,
    author       = { Ajay Anil Kumar and Rohit Kumar },
    title        = { Globo-Mart (Revision d24f020) },
    year         = 2025,
    url          = { https://huggingface.co/datasets/ajay-anil-kumar/Globo-Mart },
    doi          = { 10.57967/hf/6676 },
    publisher    = { Hugging Face }
}

Dataset Curators

This dataset was created by Ajay Anil Kumar and Rohit Kumar. For questions or contributions, please open an issue in the repository.

Downloads last month
109