Day-to-Night Image Synthesis for Training Nighttime Neural ISPs
Paper
•
2206.02715
•
Published
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
If you use this code or the associated data, please cite the paper:
@InProceedings{Punnappurath_2022_CVPR,
author = {Punnappurath, Abhijith and Abuolaim, Abdullah and Abdelhamed, Abdelrahman and Levinshtein, Alex and Brown, Michael S.},
title = {Day-to-night Image Synthesis for Training Nighttime Neural ISPs},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
}
./dataset/ ./models/python3 prepare_data.py --savefoldername night --dim --relight --relight_localsynthetic_datasets/nightnum_sat_lights in prepare_data.py). Although not mentioned in our paper, we found that adding saturated lights yeilds slightly improved performance./synthetic_datasets/nightpython3 train.py --data-dir synthetic_datasets/night --which-input clean_raw --wb-illum avg --savefoldername night_clean_raw --on-cudapython3 train.py --data-dir synthetic_datasets/night --which-input noisy_raw --wb-illum avg --savefoldername night_noisy_raw --on-cudapython3 test.py --model_dir night_clean_raw --set_names iso_50python3 test.py --model_dir night_noisy_raw --set_names iso_1600,iso_3200python3 test.py --model_dir pretrained_night_clean_raw --set_names iso_50python3 test.py --model_dir pretrained_night_noisy_raw --set_names iso_1600,iso_3200| Model | PSNR (dB) | SSIM (dB) |
|---|---|---|
| Clean raw ISO 50 | 45.97 | 0.9924 |
| Noisy raw ISO 1600 | 37.00 | 0.9288 |
| Noisy raw ISO 3200 | 36.14 | 0.9182 |
python3 k_fold_split_data.py --which_fold 0 --with_noise 0 python3 train.py --which-input clean_raw --savefoldername real_clean_raw_fold0 --on-cudapython3 test.py --set_dir data/test --model_dir real_clean_raw_fold0 --set_names iso_50python3 k_fold_split_data.py --which_fold 0 --with_noise 1 python3 train.py --which-input noisy_raw --savefoldername real_noisy_raw_fold0 --on-cudapython3 test.py --set_dir data/test --model_dir real_noisy_raw_fold0 --set_names iso_1600,iso_3200python3 k_fold_split_data.py --which_fold 0 --with_noise 0 python3 test.py --set_dir data/test --model_dir pretrained_real_clean_raw_fold0 --set_names iso_50python3 k_fold_split_data.py --which_fold 0 --with_noise 1 python3 test.py --set_dir data/test --model_dir pretrained_real_noisy_raw_fold0 --set_names iso_1600,iso_3200Results averaged over 3 folds
| Model | PSNR (dB) | SSIM (dB) |
|---|---|---|
| Clean raw ISO 50 | 46.66 | 0.9923 |
| Noisy raw ISO 1600 | 39.25 | 0.9511 |
| Noisy raw ISO 3200 | 38.14 | 0.9406 |
day, day_dimmed, and global_relight
daypython3 prepare_data.py --savefoldername dayday_dimmedpython3 prepare_data.py --savefoldername day_dimmed --dimglobal_relightpython3 prepare_data.py --savefoldername global_relight --dim --relight<baseline_model_name> below as day, day_dimmed, or global_relightpython3 train.py --data-dir synthetic_datasets/<baseline_model_name> --which-input clean_raw --savefoldername <baseline_model_name>_clean_raw --on-cudapython3 test.py --model_dir <baseline_model_name>_clean_raw --set_names iso_50python3 train.py --data-dir synthetic_datasets/<baseline_model_name> --which-input noisy_raw --savefoldername <baseline_model_name>_noisy_raw --on-cudapython3 test.py --model_dir <baseline_model_name>_noisy_raw --set_names iso_1600,iso_3200python3 k_fold_split_data.py --which_fold 0 --with_noise 0 python3 mix_synth_real_data.py --real_percent 10python3 train.py --which-input clean_raw --savefoldername mix_clean_raw_fold0_percent10 --on-cudapython3 test.py --set_dir data/test --model_dir mix_clean_raw_fold0_percent10 --set_names iso_50python3 k_fold_split_data.py --which_fold 0 --with_noise 1 python3 mix_synth_real_data.py --real_percent 10python3 train.py --which-input noisy_raw --savefoldername mix_noisy_raw_fold0_percent10 --on-cudapython3 test.py --set_dir data/test --model_dir mix_noisy_raw_fold0_percent10 --set_names iso_1600,iso_3200python3 generate_real_gt.pyAbhijith Punnappurath - ([email protected]; [email protected])