hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
68097eba15392e818a32df460c2104fd3ca64819
4,729
py
Python
examples/resources/aws/subnet.py
cfeenstra67/statey
6d127ed48265e2e072fbb26486458a4b28a333ec
[ "MIT" ]
4
2021-02-16T19:34:38.000Z
2022-01-31T16:44:14.000Z
examples/resources/aws/subnet.py
cfeenstra67/statey
6d127ed48265e2e072fbb26486458a4b28a333ec
[ "MIT" ]
null
null
null
examples/resources/aws/subnet.py
cfeenstra67/statey
6d127ed48265e2e072fbb26486458a4b28a333ec
[ "MIT" ]
null
null
null
import asyncio import contextlib from typing import Dict, Any, Optional import aioboto3 import botocore import statey as st SubnetConfigType = st.Struct[ "vpc_id" : st.String, "cidr_block" : st.String, # Optional args "ipv6_cidr_block" : ~st.String, "map_public_ip_on_launch" : st.Boolean(default=False), "assign_ipv6_address_on_creation" : st.Boolean(default=False), # Missing: tags ] SubnetType = st.Struct[ "vpc_id" : st.String, "cidr_block" : st.String, "ipv6_association_id" : ~st.String, "ipv6_cidr_block" : ~st.String, "map_public_ip_on_launch" : st.Boolean, "assign_ipv6_address_on_creation" : st.Boolean, # Missing: tags "id" : st.String, "owner_id" : st.Integer, ] class SubnetMachine(st.SimpleMachine): """ Maching representing an AWS subnet """ UP = st.State("UP", SubnetConfigType, SubnetType) @contextlib.asynccontextmanager @contextlib.asynccontextmanager @staticmethod async def create_task(self, config: SubnetConfigType) -> SubnetType: """ Create a new subnet """ async with self.resource_ctx() as ec2, self.client_ctx() as client: kws = {"CidrBlock": config["cidr_block"], "VpcId": config["vpc_id"]} if config["ipv6_cidr_block"] is not None: kws["Ipv6CidrBlock"] = config["ipv6_cidr_block"] subnet = await ec2.create_subnet(**kws) yield await self.convert_instance(subnet) map_public_ip_on_launch = await subnet.map_public_ip_on_launch if map_public_ip_on_launch != config["map_public_ip_on_launch"]: await client.modify_subnet_attribute( MapPublicIpOnLaunch={"Value": config["map_public_ip_on_launch"]}, SubnetId=subnet.id, ) await subnet.load() yield await self.convert_instance(subnet) assign_ipv6_address_on_creation = ( await subnet.assign_ipv6_address_on_creation ) if ( assign_ipv6_address_on_creation != config["assign_ipv6_address_on_creation"] ): await client.modify_subnet_attribute( AssignIpv6AddressOnCreation={ "Value": config["assign_ipv6_address_on_creation"] }, SubnetId=subnet.id, ) await subnet.load() yield await self.convert_instance(subnet) async def delete_task(self, current: SubnetType) -> st.EmptyType: """ Delete the subnet """ async with self.resource_ctx() as ec2: subnet = await ec2.Subnet(current["id"]) await subnet.delete() subnet_resource = st.MachineResource("aws_subnet", SubnetMachine) Subnet = subnet_resource.s RESOURCES = [subnet_resource] def register(registry: Optional["Registry"] = None) -> None: """ Register resources in this module """ if registry is None: registry = st.registry for resource in RESOURCES: registry.register(resource)
31.317881
85
0.60055
import asyncio import contextlib from typing import Dict, Any, Optional import aioboto3 import botocore import statey as st SubnetConfigType = st.Struct[ "vpc_id" : st.String, "cidr_block" : st.String, # Optional args "ipv6_cidr_block" : ~st.String, "map_public_ip_on_launch" : st.Boolean(default=False), "assign_ipv6_address_on_creation" : st.Boolean(default=False), # Missing: tags ] SubnetType = st.Struct[ "vpc_id" : st.String, "cidr_block" : st.String, "ipv6_association_id" : ~st.String, "ipv6_cidr_block" : ~st.String, "map_public_ip_on_launch" : st.Boolean, "assign_ipv6_address_on_creation" : st.Boolean, # Missing: tags "id" : st.String, "owner_id" : st.Integer, ] class SubnetMachine(st.SimpleMachine): """ Maching representing an AWS subnet """ UP = st.State("UP", SubnetConfigType, SubnetType) @contextlib.asynccontextmanager async def resource_ctx(self): async with aioboto3.resource("ec2") as ec2: yield ec2 @contextlib.asynccontextmanager async def client_ctx(self): async with aioboto3.client("ec2") as client: yield client @staticmethod async def convert_instance(subnet: "Subnet") -> Dict[str, Any]: out = {"id": subnet.id} ipv6_associations = [] ( out["owner_id"], out["cidr_block"], # ipv6_associations, out["map_public_ip_on_launch"], out["assign_ipv6_address_on_creation"], out["vpc_id"], ) = await asyncio.gather( subnet.owner_id, subnet.cidr_block, # subnet.ipv6_cidr_block_assocation_set, subnet.map_public_ip_on_launch, subnet.assign_ipv6_address_on_creation, subnet.vpc_id, ) if ipv6_associations: association = ipv6_associations[0] out["ipv6_association_id"] = association["AssociationId"] out["ipv6_cidr_block"] = association["Ipv6CidrBlock"] else: out["ipv6_association_id"] = None out["ipv6_cidr_block"] = None return out async def refresh_state(self, data: Any) -> Optional[Any]: async with self.resource_ctx() as ec2: instance = await ec2.Subnet(data["id"]) try: await instance.load() except botocore.exceptions.ClientError: return None return await self.convert_instance(instance) async def create_task(self, config: SubnetConfigType) -> SubnetType: """ Create a new subnet """ async with self.resource_ctx() as ec2, self.client_ctx() as client: kws = {"CidrBlock": config["cidr_block"], "VpcId": config["vpc_id"]} if config["ipv6_cidr_block"] is not None: kws["Ipv6CidrBlock"] = config["ipv6_cidr_block"] subnet = await ec2.create_subnet(**kws) yield await self.convert_instance(subnet) map_public_ip_on_launch = await subnet.map_public_ip_on_launch if map_public_ip_on_launch != config["map_public_ip_on_launch"]: await client.modify_subnet_attribute( MapPublicIpOnLaunch={"Value": config["map_public_ip_on_launch"]}, SubnetId=subnet.id, ) await subnet.load() yield await self.convert_instance(subnet) assign_ipv6_address_on_creation = ( await subnet.assign_ipv6_address_on_creation ) if ( assign_ipv6_address_on_creation != config["assign_ipv6_address_on_creation"] ): await client.modify_subnet_attribute( AssignIpv6AddressOnCreation={ "Value": config["assign_ipv6_address_on_creation"] }, SubnetId=subnet.id, ) await subnet.load() yield await self.convert_instance(subnet) async def delete_task(self, current: SubnetType) -> st.EmptyType: """ Delete the subnet """ async with self.resource_ctx() as ec2: subnet = await ec2.Subnet(current["id"]) await subnet.delete() subnet_resource = st.MachineResource("aws_subnet", SubnetMachine) Subnet = subnet_resource.s RESOURCES = [subnet_resource] def register(registry: Optional["Registry"] = None) -> None: """ Register resources in this module """ if registry is None: registry = st.registry for resource in RESOURCES: registry.register(resource)
1,439
0
105
e00e30fcd11f60809f3d4358645861477fc96613
2,173
py
Python
constants.py
julzerinos/python-opencv-plant_detection
f7895d42cdf6c8d8a7fa43dd624024f185542207
[ "MIT" ]
10
2020-08-29T08:30:24.000Z
2022-02-15T14:06:19.000Z
constants.py
julzerinos/python-opencv-plant_detection
f7895d42cdf6c8d8a7fa43dd624024f185542207
[ "MIT" ]
null
null
null
constants.py
julzerinos/python-opencv-plant_detection
f7895d42cdf6c8d8a7fa43dd624024f185542207
[ "MIT" ]
3
2020-08-29T08:30:31.000Z
2021-01-09T07:52:45.000Z
class constants: """Class of constants for each component of detector """ class bgsub: """Background subtraction/segmentation mod [str] the segmentation model (MOG2, KNN, GMG) """ mod = 'MOG2' class HSV: """HSV inRange filtering maximum values and initial values """ max_value = 255 max_value_H = 360//2 low_H = 40 low_S = 30 low_V = 30 high_H = 75 high_S = 255 high_V = 255 low_H_name = 'Low H' low_S_name = 'Low S' low_V_name = 'Low V' high_H_name = 'High H' high_S_name = 'High S' high_V_name = 'High V' class window: """Window control names of windows """ window1 = 'Altered' window2 = 'Original' class asth: """Aesthetics font [enum int] font used for description text [bool] should text be imprinted on image? """ font = 0 text = False class cntr: """Controls for program next_k - next image prev_k - prev image save - save single image (in mode) save_all - save all images (in mode) exit_k - exit the program dice - calculate dice value dice_more - show all dice values based on dataset m1_k etc. - mode selection modes [dict] dictionary with mode names """ next_k = ord('m') prev_k = ord('n') save = ord('s') save_all = ord('z') exit_k = 27 dice = ord('d') dice_more = ord('f') m1_k = ord('1') m2_k = ord('2') m3_k = ord('3') m4_k = ord('4') m5_k = ord('5') modes = { 0: 'original', 1: 'hsv_filter', 2: 'ws_mask', 3: 'ws_mask_bg', 4: 'fgbg_segm', 5: 'ws_fgbg_segm' } class xtra: """Ends and odds disco [bool] random colors for masks on each loop? show_save_all [bool] run saving all in foreground? """ disco = False show_save_all = True
21.949495
58
0.495628
class constants: """Class of constants for each component of detector """ class bgsub: """Background subtraction/segmentation mod [str] the segmentation model (MOG2, KNN, GMG) """ mod = 'MOG2' class HSV: """HSV inRange filtering maximum values and initial values """ max_value = 255 max_value_H = 360//2 low_H = 40 low_S = 30 low_V = 30 high_H = 75 high_S = 255 high_V = 255 low_H_name = 'Low H' low_S_name = 'Low S' low_V_name = 'Low V' high_H_name = 'High H' high_S_name = 'High S' high_V_name = 'High V' class window: """Window control names of windows """ window1 = 'Altered' window2 = 'Original' class asth: """Aesthetics font [enum int] font used for description text [bool] should text be imprinted on image? """ font = 0 text = False class cntr: """Controls for program next_k - next image prev_k - prev image save - save single image (in mode) save_all - save all images (in mode) exit_k - exit the program dice - calculate dice value dice_more - show all dice values based on dataset m1_k etc. - mode selection modes [dict] dictionary with mode names """ next_k = ord('m') prev_k = ord('n') save = ord('s') save_all = ord('z') exit_k = 27 dice = ord('d') dice_more = ord('f') m1_k = ord('1') m2_k = ord('2') m3_k = ord('3') m4_k = ord('4') m5_k = ord('5') modes = { 0: 'original', 1: 'hsv_filter', 2: 'ws_mask', 3: 'ws_mask_bg', 4: 'fgbg_segm', 5: 'ws_fgbg_segm' } class xtra: """Ends and odds disco [bool] random colors for masks on each loop? show_save_all [bool] run saving all in foreground? """ disco = False show_save_all = True
0
0
0
194ab0dc74cd18f13ee2868097d1372c6db981b3
7,181
py
Python
archive/_s3.py
zpz/upathlib
5bf7013be244c5f1b276e0b0ac1b9d7637666ceb
[ "MIT" ]
null
null
null
archive/_s3.py
zpz/upathlib
5bf7013be244c5f1b276e0b0ac1b9d7637666ceb
[ "MIT" ]
19
2021-07-08T06:42:31.000Z
2021-10-15T09:07:17.000Z
archive/_s3.py
zpz/upathlib
5bf7013be244c5f1b276e0b0ac1b9d7637666ceb
[ "MIT" ]
null
null
null
import logging from pathlib import Path import time import boto3 # This module requires a directory `.aws/` containing credentials in the home directory, # or environment variables `AWS_ACCESS_KEY_ID`, and `AWS_SECRET_ACCESS_KEY`. logger = logging.getLogger(__name__)
32.640909
98
0.569002
import logging from pathlib import Path import time import boto3 # This module requires a directory `.aws/` containing credentials in the home directory, # or environment variables `AWS_ACCESS_KEY_ID`, and `AWS_SECRET_ACCESS_KEY`. logger = logging.getLogger(__name__) def _get_client(): return boto3.session.Session().client('s3') def _has_key(s3_client, bucket: str, key: str) -> bool: response = s3_client.list_objects_v2(Bucket=bucket, Prefix=key) for obj in response.get('Contents', []): if obj['Key'] == key: return True return False def _delete_key(s3_client, bucket: str, key: str) -> None: s3_client.delete_object(Bucket=bucket, Key=key) def has_key(bucket: str, key: str) -> bool: return _has_key(_get_client(), bucket, key) def delete_key(bucket: str, key: str) -> None: return _delete_key(_get_client(), bucket, key) class Bucket: def __init__(self, bucket): for header in ('s3://', 's3n://'): if bucket.startswith(header): bucket = bucket[len(header):] break if '/' in bucket: bucket = bucket[: bucket.find('/')] self._bucket = boto3.resource('s3').Bucket(bucket) @property def name(self): return self._bucket.name def _remove_bucket_key(self, key): for header in ('s3://', 's3n://'): if key.startswith(header): assert key.startswith(header + self.name + '/') key = key[(len(header) + len(self.name) + 1):] return key def upload(self, local_file: str, s3_key: str) -> None: ''' Upload a single file to S3. `local_file`: path to local file. `s3_key`: S3 'key'. Example: suppose current bucket is s3://my-org, with local_file: /home/zepu/work/data/xyz/memo.txt s3_key: mysurvey/memo --> remote file: s3://my-org/mysurvey/memo Existing file with the same name with be overwritten. ''' local_file = Path(local_file) if not local_file.is_file(): raise Exception('a file name is expected') data = open(local_file, 'rb') s3_key = self._remove_bucket_key(s3_key) self._bucket.put_object(Key=s3_key, Body=data) def upload_tree(self, local_path: str, s3_path: str, pattern: str = '**/*') -> None: ''' `local_path`: directory whose content will be uploaded. If `local_path` contains a trailing `/`, then no part of this path name becomes part of the remote name; otherwise, the final node in this path name becomes the leading segment of the remote name. `pattern`: '*' (everything directly under `local_path`), '**/*' (everything recursively under `local_path`), '*.py' (every Python module directly under `local_path`), '**/*.py' (every Python module recursively under `local_path`), etc. Example: suppose current bucket is s3://my-org, with local_path: /home/me/work/data/xyz, containing .../xyz/a.txt, .../xyz/b.txt, ../xyz/zyx/aa.txt) s3_path: dataset1 s3_name: '**/*' --> remote files: s3://my-org/dataset1/xyz/a.txt s3://my-org/dataset1/xyz/b.txt s3://my-org/dataset1/xyz/zyx/aa.txt local_path: /home/me/work/data/xyz/ (note the trailing '/') --> remote files: s3://my-org/dataset1/a.txt s3://my-org/dataset1/b.txt s3://my-org/dataset1/zyx/aa.txt ''' with_root = not local_path.endswith('/') local_path = Path(local_path) if not local_path.is_dir(): raise Exception('a directory name is expected') nodes = [v for v in local_path.glob(pattern) if v.is_file()] s3_path = self._remove_bucket_key(s3_path) for node in nodes: key = node.relative_to(local_path) if with_root: key = local_path.name / key key = s3_path / key self.upload(node, str(key)) def download(self, s3_key: str, local_file: str = None) -> None: s3_key = self._remove_bucket_key(s3_key) if local_file is None: local_file = str(Path(s3_key).name) self._bucket.download_file(s3_key, local_file) def download_tree(self, s3_path: str, local_path: str = None) -> None: s3_path = self._remove_bucket_key(s3_path) raise NotImplementedError def ls(self, key, recursive: bool = False): # List object names directly or recursively named like `key*`. # If `key` is `abc/def/`, # then `abc/def/123/45` will return as `123/45` # # If `key` is `abc/def`, # then `abc/defgh/45` will return as `defgh/45`; # `abc/def/gh` will return as `/gh`. # # So if you know `key` is a `directory`, then it's a good idea to # include the trailing `/` in `key`. key = self._remove_bucket_key(key) z = self._bucket.objects.filter(Prefix=key) if key.endswith('/'): key_len = len(key) else: key_len = key.rfind('/') + 1 if recursive: return (v.key[key_len:] for v in z) # this is a generator, b/c there can be many, many elements else: keys = set() for v in z: vv = v.key[key_len:] idx = vv.find('/') if idx >= 0: vv = vv[: idx] keys.add(vv) return sorted(list(keys)) def has(self, key: str) -> bool: key = self._remove_bucket_key(key) if not hasattr(self, '_s3'): self._s3 = _get_client() return _has_key(self._s3, self._bucket.name, key) def delete(self, key: str) -> None: key = self._remove_bucket_key(key) if not hasattr(self, '_s3'): self._s3 = _get_client() _delete_key(self._s3, self._bucket.name, key) def delete_tree(self, s3_path: str) -> int: s3_path = self._remove_bucket_key(s3_path) n = 0 while True: nn = self._delete_tree(s3_path) if nn == 0: break n = max(n, nn) time.sleep(0.5) return n def _delete_tree(self, s3_path: str) -> int: ''' Return the number of objects deleted. After this operation, the 'folder' `s3_path` is also gone. TODO: this is not the fastest way to do it. ''' assert s3_path.endswith('/') n = 0 for k in self.ls(s3_path, recursive=True): kk = s3_path + k self.delete(kk) n += 1 return n def reduce_boto_logging(): import boto3.s3.transfer assert boto3.s3.transfer # silence pyflakes for name in logging.Logger.manager.loggerDict.keys(): if name.startswith('boto') or name.startswith('urllib3') or name.startswith('s3transfer'): logging.getLogger(name).setLevel(logging.ERROR)
3,441
3,300
161
760e3cb5157583c0d49bb5b803c4560b4deaa6f3
3,105
py
Python
experiments/onmtf_cuda.py
lucasbrunialti/biclustering-experiments
30e51e23b0c3d91939bf7ec49c47d3035e6ecb57
[ "BSD-2-Clause" ]
3
2017-11-21T08:21:32.000Z
2020-03-10T14:57:06.000Z
experiments/onmtf_cuda.py
lucasbrunialti/biclustering-experiments
30e51e23b0c3d91939bf7ec49c47d3035e6ecb57
[ "BSD-2-Clause" ]
null
null
null
experiments/onmtf_cuda.py
lucasbrunialti/biclustering-experiments
30e51e23b0c3d91939bf7ec49c47d3035e6ecb57
[ "BSD-2-Clause" ]
4
2017-01-18T18:10:37.000Z
2021-12-15T02:23:15.000Z
import numpy as np import cudamat as cm
28.486239
76
0.58132
import numpy as np import cudamat as cm def matrix_factorization_clustering(X_aux, k, l, norm=False, num_iters=100): cm.cublas_init() m, n = X_aux.shape U = cm.CUDAMatrix(np.random.rand(m, k)) S = cm.CUDAMatrix(np.random.rand(k, l)) V = cm.CUDAMatrix(np.random.rand(n, l)) X = cm.CUDAMatrix(X_aux) # if norm: # X = Normalizer().fit_transform(X) XV = cm.CUDAMatrix(np.random.rand(m, l)) XVSt = cm.CUDAMatrix(np.random.rand(m, k)) US = cm.CUDAMatrix(np.random.rand(m, l)) USVt = cm.CUDAMatrix(np.random.rand(m, n)) USVtXt = cm.CUDAMatrix(np.random.rand(m, m)) USVtXtU = cm.CUDAMatrix(np.random.rand(m, k)) U_aux = cm.CUDAMatrix(np.random.rand(m, k)) XtUS = cm.CUDAMatrix(np.random.rand(m, l)) VSt = cm.CUDAMatrix(np.random.rand(n, k)) VStUt = cm.CUDAMatrix(np.random.rand(n, m)) UtX = cm.CUDAMatrix(np.random.rand(k, n)) VStUtXV = cm.CUDAMatrix(np.random.rand(n, l)) V_aux = cm.CUDAMatrix(np.random.rand(n, l)) UtXV = cm.CUDAMatrix(np.random.rand(k, l)) UtUS = cm.CUDAMatrix(np.random.rand(k, l)) UtUSVt = cm.CUDAMatrix(np.random.rand(k, n)) UtUSVtV = cm.CUDAMatrix(np.random.rand(k, l)) S_aux = cm.CUDAMatrix(np.random.rand(k, l)) error_best = np.inf error = np.inf for i in range(num_iters): # compute U cm.dot(X, V, target=XV) cm.dot(XV, S.T, target=XVSt) if i is 0: cm.dot(U, S, target=US) cm.dot(US, V.T, target=USVt) cm.dot(USVt, X.T, target=USVtXt) cm.dot(USVtXt, U, target=USVtXtU) cm.divide(XVSt, USVtXtU, U_aux) cm.mult(U, U_aux, U) # compute V cm.dot(U, S, target=US) cm.dot(X.T, US, target=XtUS) cm.dot(V, S.T, target=VSt) cm.dot(VSt, U.T, target=VStUt) cm.dot(VStUt, XV, target=VStUtXV) cm.divide(XtUS, VStUtXV, target=V_aux) cm.mult(V, V_aux, V) # compute S cm.dot(U.T, X, target=UtX) cm.dot(UtX, V, target=UtXV) cm.dot(U.T, US, target=UtUS) cm.dot(UtUS, V.T, UtUSVt) cm.dot(UtUSVt, V, target=UtUSVtV) cm.divide(UtXV, UtUSVtV, target=S_aux) cm.mult(S, S_aux, target=S) error_ant = error cm.dot(U, S, target=US) cm.dot(US, V.T, target=USVt) error = cm.sum(cm.pow(cm.subtract(X, USVt), 2), axis=0) if error < error_best: U_best_cm = U S_best_cm = S V_best_cm = V error_best = error if np.abs(error - error_ant) <= 0.000001: break U_best = U_best_cm.asarray() S_best = S_best_cm.asarray() V_best = V_best_cm.asarray() Du = np.diag(np.ones(m).dot(U_best)) Dv = np.diag(np.ones(n).dot(V_best)) U_norm = U_best.dot( np.diag(S_best.dot(Dv).dot(np.ones(l))) ) V_norm = V_best.dot( np.diag(np.ones(k).dot(Du).dot(S_best)) ) rows_ind = np.argmax(U_best, axis=1) cols_ind = np.argmax(V_best, axis=1) cm.shutdown() return U_norm, S_best, V_norm, rows_ind, cols_ind, error_best
3,040
0
23
75f81d84c2a063746a49d48076491405182c7fc8
10,799
py
Python
storitch/handlers/store.py
thomaserlang/storitch
dbcf97af547d9cb1ae5c3994654e8db03e43a253
[ "MIT" ]
null
null
null
storitch/handlers/store.py
thomaserlang/storitch
dbcf97af547d9cb1ae5c3994654e8db03e43a253
[ "MIT" ]
1
2022-03-03T00:35:08.000Z
2022-03-03T00:35:08.000Z
storitch/handlers/store.py
thomaserlang/storitch
dbcf97af547d9cb1ae5c3994654e8db03e43a253
[ "MIT" ]
null
null
null
from typing import Union, Dict, List, Any, Tuple, Optional import json, tempfile, os, logging, re, shutil, mimetypes, good from tornado import httpclient, web, queues from storitch import utils, config from storitch.decorators import run_on_executor from wand import image, exceptions @web.stream_request_body def thumbnail(path: str) -> bool: ''' Specify the path and add a "@" followed by the arguments. This allows us to easily get the original file, make the changes, save the file with the full path, so the server never has to do the operation again, as long as the arguments are precisely the same. Arguments can be specified as followed: SXx - Width, keeps aspect ratio SYx - Height, keeps aspect ration. Ignored if SX is specified. ROTATEx - Number of degrees you wise to rotate the image. Supports negative numbers. RESx - Resolution, used for PDF files, the higher the number, the better the quality. PAGEx - Page index in the PDF document. The file format can be specified by ending the path with E.g. .jpg, .png, .tiff, etc. The arguments can be separated with _ or just don't separate them. Works either way. Example: /foo/14bc...@SX1024_ROTATE90.png Resizes the image to a width of 1024, rotates it 90 degrees and converts it to a PNG file. :param path: str ''' p = path.split('@') if len(p) != 2: return False if os.path.exists(path): return True size_match, rotate_match, resolution_match, \ page_match, format_match = __parse_arguments(p[1]) # a specific page in a PDF document if page_match and page_match.group(1) != None: page = '[{}]'.format(page_match.group(1)) else: # Prevent a dicom file or pdf file from extracting multiple images page = '[0]' o = { 'filename': p[0]+page } if resolution_match and resolution_match.group(1) != None: o['resolution'] = int(resolution_match.group(1)) with image.Image(**o) as img: if size_match: # resize, keep aspect ratio if size_match.group(1) != None:# width img.transform(resize=size_match.group(1)) elif size_match.group(2) != None:# height img.transform(resize='x'+size_match.group(2)) if rotate_match: if rotate_match.group(1) != None: img.rotate(int(rotate_match.group(1))) if format_match: img.format = format_match.group(1) img.save(filename=path) return True
32.429429
96
0.567738
from typing import Union, Dict, List, Any, Tuple, Optional import json, tempfile, os, logging, re, shutil, mimetypes, good from tornado import httpclient, web, queues from storitch import utils, config from storitch.decorators import run_on_executor from wand import image, exceptions class Base_handler(web.RequestHandler): def write_object(self, data: Union[Dict, List]) -> None: self.set_json_headers() self.write(json.dumps(data)) def set_json_headers(self) -> None: self.set_header('Cache-Control', 'no-cache, must-revalidate') self.set_header('Expires', 'Sat, 26 Jul 1997 05:00:00 GMT') self.set_header('Content-Type', 'application/json') def write_error(self, status_code: int, **kwargs) -> None: self.set_json_headers() error = {'error': 'Unknown error'} if 'exc_info' in kwargs: error['error'] = str(kwargs['exc_info'][1]) self.set_status(status_code) self.write_object(error) @run_on_executor def move_to_permanent_store(self, temp_path: str, filename: str) -> Dict[str, Any]: return move_to_permanent_store(temp_path, filename) def get_content_type(self, path: str) -> str: # From: https://www.tornadoweb.org/en/stable/_modules/tornado/web.html#StaticFileHandler mime_type, encoding = mimetypes.guess_type(path) # per RFC 6713, use the appropriate type for a gzip compressed file if encoding == "gzip": return "application/gzip" # As of 2015-07-21 there is no bzip2 encoding defined at # http://www.iana.org/assignments/media-types/media-types.xhtml # So for that (and any other encoding), use octet-stream. elif encoding is not None: return "application/octet-stream" elif mime_type is not None: return mime_type # if mime_type not detected, use application/octet-stream else: return "application/octet-stream" class Multipart_handler(Base_handler): async def post(self) -> None: if 'multipart/form-data' not in self.request.headers.get('Content-Type').lower(): raise web.HTTPError(400, 'Content-Type must be multipart/form-data, was: {}'.format( self.request.headers.get('Content-Type') ) ) if not self.request.files: raise web.HTTPError(400, 'No files uploaded') self.set_status(201) results = [] for n in self.request.files: for f in self.request.files[n]: temp_path = await self.save_body(f['body']) f['body'] = None r = await self.move_to_permanent_store(temp_path, f['filename']) results.append(r) self.write_object(results) @run_on_executor def save_body(self, body: bytes) -> str: with tempfile.NamedTemporaryFile(delete=False, prefix='storitch-') as t: t.write(body) return t.name @web.stream_request_body class Session_handler(Base_handler): __schema__ = good.Schema({ 'finished': good.Boolean(), 'filename': good.All(str, good.Length(min=1, max=255)), good.Optional('session'): str, }) def prepare(self) -> None: if 'application/octet-stream' not in self.request.headers.get('Content-Type').lower(): raise web.HTTPError(400, 'Content-Type must be application/octet-stream, was: {}'.format( self.request.headers.get('Content-Type') ) ) j = self.request.headers.get('storitch-json', None) if not j: raise web.HTTPError(400, 'Header: storitch-json must be set') data = json.loads(j) self.h_finished = data['finished'] self.h_filename = data['filename'] self.h_session = data.get('session') if not self.h_session: self.h_session = self.new_session() self.temp_path = os.path.join( tempfile.gettempdir(), self.h_session ) if not os.path.isfile(self.temp_path): raise web.HTTPError(400, 'Session unknown') self.file = open(self.temp_path, 'ab') def validate_json(self, data: Dict[str, Any]) -> Union[Dict[str, Any], List]: try: return self.__schema__(data) except good.MultipleInvalid as ee: data = [] for e in ee: data.append( '{}: {}'.format( '.'.join(str(x) for x in e.path), e.message, ) ) raise web.HTTPError(400,' - '.join(d for d in data)) except good.Invalid as e: raise web.HTTPError(400, '{}: {}'.format( '.'.join(str(x) for x in e.path), e.message, )) async def data_received(self, chunk: bytes) -> None: self.file.write(chunk) async def put(self) -> None: self.file.close() if self.h_finished: r = await self.move_to_permanent_store(self.temp_path, self.h_filename) self.write_object(r) else: self.write_object({ 'session': self.h_session, }) def new_session(self) -> str: with tempfile.NamedTemporaryFile(delete=False, prefix='storitch-') as t: return os.path.basename(t.name) class Thumbnail_handler(Base_handler): async def get(self, hash_: Optional[str] = None) -> None: if not hash_ or len(hash_) < 64: raise web.HTTPError(404, 'Please specify a file hash') path = os.path.abspath(os.path.join( os.path.realpath(config['store_path']), utils.path_from_hash(hash_), hash_ )) if '@' in hash_: path = await self.thumbnail(path) if not path: self.write('Failed to create the thumbnail') self.set_header('Content-Type', self.get_content_type(path)) with open(path, 'rb') as f: while True: d = f.read(16384) if not d: break self.write(d) @run_on_executor def thumbnail(self, path: str) -> str: if thumbnail(path): return path def move_to_permanent_store(temp_path: str, filename: str) -> Dict[str, Any]: hash_ = utils.file_sha256(temp_path) path = os.path.abspath(os.path.join( os.path.realpath(config['store_path']), utils.path_from_hash(hash_), )) if not os.path.exists(path): os.makedirs(path, mode=0o755) path = os.path.join(path, hash_) if not os.path.exists(path): shutil.move(temp_path, path) os.chmod(path, 0o755) else: os.remove(temp_path) extra = { 'type': 'file', } d = os.path.splitext(filename) if len(d) == 2: ext = d[1] if ext.lower() in config['image_exts']: wh = image_width_high(path) if wh: wh['type'] = 'image' if wh: extra.update(wh) return { 'stored': True, 'filesize': os.stat(path).st_size, 'hash': hash_, 'filename': filename, **extra } def image_width_high(path) -> Optional[Dict[str, int]]: try: with image.Image(filename=path) as img: return { 'width': img.width, 'height': img.height, } except (ValueError, exceptions.MissingDelegateError): return None def thumbnail(path: str) -> bool: ''' Specify the path and add a "@" followed by the arguments. This allows us to easily get the original file, make the changes, save the file with the full path, so the server never has to do the operation again, as long as the arguments are precisely the same. Arguments can be specified as followed: SXx - Width, keeps aspect ratio SYx - Height, keeps aspect ration. Ignored if SX is specified. ROTATEx - Number of degrees you wise to rotate the image. Supports negative numbers. RESx - Resolution, used for PDF files, the higher the number, the better the quality. PAGEx - Page index in the PDF document. The file format can be specified by ending the path with E.g. .jpg, .png, .tiff, etc. The arguments can be separated with _ or just don't separate them. Works either way. Example: /foo/14bc...@SX1024_ROTATE90.png Resizes the image to a width of 1024, rotates it 90 degrees and converts it to a PNG file. :param path: str ''' p = path.split('@') if len(p) != 2: return False if os.path.exists(path): return True size_match, rotate_match, resolution_match, \ page_match, format_match = __parse_arguments(p[1]) # a specific page in a PDF document if page_match and page_match.group(1) != None: page = '[{}]'.format(page_match.group(1)) else: # Prevent a dicom file or pdf file from extracting multiple images page = '[0]' o = { 'filename': p[0]+page } if resolution_match and resolution_match.group(1) != None: o['resolution'] = int(resolution_match.group(1)) with image.Image(**o) as img: if size_match: # resize, keep aspect ratio if size_match.group(1) != None:# width img.transform(resize=size_match.group(1)) elif size_match.group(2) != None:# height img.transform(resize='x'+size_match.group(2)) if rotate_match: if rotate_match.group(1) != None: img.rotate(int(rotate_match.group(1))) if format_match: img.format = format_match.group(1) img.save(filename=path) return True def __parse_arguments(arguments: str) -> Tuple[str, str, str, str, str]: size_match = re.search( 'SX(\d+)|SY(\d+)', arguments, re.I ) rotate_match = re.search( 'ROTATE(-?\d+)', arguments, re.I ) resolution_match = re.search( 'RES(\d+)', arguments, re.I ) page_match = re.search( 'PAGE(\d+)', arguments, re.I ) format_match = re.search( '\.([a-z0-9]{2,5})', arguments, re.I ) return ( size_match, rotate_match, resolution_match, page_match, format_match, )
7,197
690
160
b0fbc439e2b9764f97c049f14ced20df3b6321a9
7,052
py
Python
ddf_library/functions/graph_lib/page_rank.py
eubr-bigsea/Compss-Python
09ab7c474c8badc9932de3e1148f62ffba16b0b2
[ "Apache-2.0" ]
3
2017-08-22T11:32:02.000Z
2021-08-09T09:35:51.000Z
ddf_library/functions/graph_lib/page_rank.py
eubr-bigsea/Compss-Python
09ab7c474c8badc9932de3e1148f62ffba16b0b2
[ "Apache-2.0" ]
null
null
null
ddf_library/functions/graph_lib/page_rank.py
eubr-bigsea/Compss-Python
09ab7c474c8badc9932de3e1148f62ffba16b0b2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Lucas Miguel S Ponce" __email__ = "[email protected]" from ddf_library.bases.metadata import Status, OPTGroup from ddf_library.bases.context_base import ContextBase from ddf_library.ddf import DDF from ddf_library.bases.ddf_model import ModelDDF from ddf_library.utils import generate_info, read_stage_file, \ create_stage_files, save_stage_file from pycompss.api.api import compss_wait_on, compss_delete_object from pycompss.api.task import task from pycompss.functions.reduce import merge_reduce from pycompss.api.parameter import FILE_IN, COLLECTION_IN import pandas as pd import numpy as np __all__ = ['PageRank'] # TODO: this algorithm can be optimized class PageRank(ModelDDF): # noinspection PyUnresolvedReferences """ PageRank is one of the methods Google uses to determine a page's relevance or importance. The idea that Page Rank brought up was that, the importance of any web page can be judged by looking at the pages that link to it. PageRank can be utilized in others domains. For example, may also be used as a methodology to measure the apparent impact of a community. .. note: This parallel implementation assumes that the list of unique vertex can be fit in memory. :Example: >>> pr = PageRank(damping_factor=0.85) >>> ddf2 = pr.transform(ddf1, inlink_col='col1', outlink_col='col2') """ def __init__(self, damping_factor=0.85, max_iters=100): """ :param damping_factor: Default damping factor is 0.85; :param max_iters: Maximum number of iterations (default is 100). """ super(PageRank, self).__init__() self.inlink_col = None self.outlink_col = None self.max_iters = max_iters self.damping_factor = damping_factor def transform(self, data, outlink_col, inlink_col): """ Generates the PageRank's result. :param data: DDF :param outlink_col: Out-link vertex; :param inlink_col: In-link vertex; :return: DDF with Vertex and Rank columns """ df, nfrag, tmp = self._ddf_initial_setup(data) self.inlink_col = inlink_col self.outlink_col = outlink_col col1 = 'Vertex' col2 = 'Rank' """ Load all URL's from the data and initialize their neighbors. Initialize each page’s rank to 1.0. """ adj_list = [{} for _ in range(nfrag)] rank_list = [{} for _ in range(nfrag)] counts_in = [{} for _ in range(nfrag)] for i in range(nfrag): adj_list[i], rank_list[i], counts_in[i] = \ _pr_create_adjlist(df[i], inlink_col, outlink_col) counts_in = merge_reduce(_merge_counts, counts_in) for i in range(nfrag): adj_list[i] = _pr_update_adjlist(adj_list[i], counts_in) compss_delete_object(counts_in) for iteration in range(self.max_iters): """Calculate the partial contribution of each vertex.""" contributions = [_calc_contribuitions(adj_list[i], rank_list[i]) for i in range(nfrag)] merged_c = merge_reduce(_merge_counts, contributions) """Update each vertex rank in the fragment.""" rank_list = [_update_rank(rank_list[i], merged_c, self.damping_factor) for i in range(nfrag)] merged_table = merge_ranks(rank_list, col1, col2) result, info = _pagerank_split(merged_table, nfrag) new_state_uuid = ContextBase\ .ddf_add_task(self.name, status=Status.STATUS_COMPLETED, opt=OPTGroup.OPT_OTHER, info_data=info, parent=[tmp.last_uuid], result=result, function=self.transform, parameters=data) return DDF(last_uuid=new_state_uuid) @task(returns=3, data=FILE_IN) @task(returns=1) def _merge_counts(counts1, counts2): """ Merge the frequency of each vertex. .. note:: It assumes that the frequency list can be fitted in memory. """ for v_out in counts2: if v_out in counts1: counts1[v_out] += counts2[v_out] else: counts1[v_out] = counts2[v_out] return counts1 @task(returns=1) def _pr_update_adjlist(adj1, counts_in): """Update the frequency of vertex in each fragment.""" for key in adj1: adj1[key][1] = counts_in[key] return adj1 @task(returns=1) def _calc_contribuitions(adj, ranks): """Calculate the partial contribution of each vertex.""" contrib = {} for key in adj: urls = adj[key][0] num_neighbors = adj[key][1] rank = ranks[key] for url in urls: if url not in contrib: # out = contrib contrib[url] = rank/num_neighbors else: contrib[url] += rank/num_neighbors return contrib @task(returns=1) def _update_rank(ranks, contrib, factor): """Update the rank of each vertex in the fragment.""" bo = 1.0 - factor for key in contrib: if key in ranks: ranks[key] = bo + factor*contrib[key] return ranks @task(returns=1, dfs=COLLECTION_IN) def merge_ranks(dfs, c1, c2): """Create the final result. Merge and remove duplicates vertex.""" dfs = [pd.DataFrame(ranks.items(), columns=[c1, c2]) for ranks in dfs] dfs = pd.concat(dfs, ignore_index=True)\ .drop_duplicates(ignore_index=True)\ .sort_values(['Rank'], ascending=False, ignore_index=True) return dfs def _pagerank_split(result, nfrag): """Split the list of vertex into nfrag parts. Note: the list of unique vertex and their ranks must be fit in memory. """ result = compss_wait_on(result) result = np.array_split(result, nfrag) outfiles = create_stage_files(nfrag) info = [0] * nfrag for f, table in enumerate(result): save_stage_file(outfiles[f], table) info[f] = generate_info(table, f) return outfiles, info
29.630252
78
0.620108
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Lucas Miguel S Ponce" __email__ = "[email protected]" from ddf_library.bases.metadata import Status, OPTGroup from ddf_library.bases.context_base import ContextBase from ddf_library.ddf import DDF from ddf_library.bases.ddf_model import ModelDDF from ddf_library.utils import generate_info, read_stage_file, \ create_stage_files, save_stage_file from pycompss.api.api import compss_wait_on, compss_delete_object from pycompss.api.task import task from pycompss.functions.reduce import merge_reduce from pycompss.api.parameter import FILE_IN, COLLECTION_IN import pandas as pd import numpy as np __all__ = ['PageRank'] # TODO: this algorithm can be optimized class PageRank(ModelDDF): # noinspection PyUnresolvedReferences """ PageRank is one of the methods Google uses to determine a page's relevance or importance. The idea that Page Rank brought up was that, the importance of any web page can be judged by looking at the pages that link to it. PageRank can be utilized in others domains. For example, may also be used as a methodology to measure the apparent impact of a community. .. note: This parallel implementation assumes that the list of unique vertex can be fit in memory. :Example: >>> pr = PageRank(damping_factor=0.85) >>> ddf2 = pr.transform(ddf1, inlink_col='col1', outlink_col='col2') """ def __init__(self, damping_factor=0.85, max_iters=100): """ :param damping_factor: Default damping factor is 0.85; :param max_iters: Maximum number of iterations (default is 100). """ super(PageRank, self).__init__() self.inlink_col = None self.outlink_col = None self.max_iters = max_iters self.damping_factor = damping_factor def transform(self, data, outlink_col, inlink_col): """ Generates the PageRank's result. :param data: DDF :param outlink_col: Out-link vertex; :param inlink_col: In-link vertex; :return: DDF with Vertex and Rank columns """ df, nfrag, tmp = self._ddf_initial_setup(data) self.inlink_col = inlink_col self.outlink_col = outlink_col col1 = 'Vertex' col2 = 'Rank' """ Load all URL's from the data and initialize their neighbors. Initialize each page’s rank to 1.0. """ adj_list = [{} for _ in range(nfrag)] rank_list = [{} for _ in range(nfrag)] counts_in = [{} for _ in range(nfrag)] for i in range(nfrag): adj_list[i], rank_list[i], counts_in[i] = \ _pr_create_adjlist(df[i], inlink_col, outlink_col) counts_in = merge_reduce(_merge_counts, counts_in) for i in range(nfrag): adj_list[i] = _pr_update_adjlist(adj_list[i], counts_in) compss_delete_object(counts_in) for iteration in range(self.max_iters): """Calculate the partial contribution of each vertex.""" contributions = [_calc_contribuitions(adj_list[i], rank_list[i]) for i in range(nfrag)] merged_c = merge_reduce(_merge_counts, contributions) """Update each vertex rank in the fragment.""" rank_list = [_update_rank(rank_list[i], merged_c, self.damping_factor) for i in range(nfrag)] merged_table = merge_ranks(rank_list, col1, col2) result, info = _pagerank_split(merged_table, nfrag) new_state_uuid = ContextBase\ .ddf_add_task(self.name, status=Status.STATUS_COMPLETED, opt=OPTGroup.OPT_OTHER, info_data=info, parent=[tmp.last_uuid], result=result, function=self.transform, parameters=data) return DDF(last_uuid=new_state_uuid) @task(returns=3, data=FILE_IN) def _pr_create_adjlist(data, inlink, outlink): cols = [outlink, inlink] adj = {} ranks = {} data = read_stage_file(data, cols=cols) for link in data[cols].to_numpy(): v_out, v_in = link # Generate a partial adjacency list. if v_out in adj: adj[v_out][0].append(v_in) adj[v_out][1] += 1 else: adj[v_out] = [[v_in], 1] # Generate a partial rank list of each vertex. if v_out not in ranks: ranks[v_out] = 1.0 # Rank, contributions, main if v_in not in ranks: ranks[v_in] = 1.0 # Generate a partial list of frequency of each vertex. counts_in = {} for v_out in adj: counts_in[v_out] = adj[v_out][1] return adj, ranks, counts_in @task(returns=1) def _merge_counts(counts1, counts2): """ Merge the frequency of each vertex. .. note:: It assumes that the frequency list can be fitted in memory. """ for v_out in counts2: if v_out in counts1: counts1[v_out] += counts2[v_out] else: counts1[v_out] = counts2[v_out] return counts1 @task(returns=1) def _pr_update_adjlist(adj1, counts_in): """Update the frequency of vertex in each fragment.""" for key in adj1: adj1[key][1] = counts_in[key] return adj1 @task(returns=1) def _calc_contribuitions(adj, ranks): """Calculate the partial contribution of each vertex.""" contrib = {} for key in adj: urls = adj[key][0] num_neighbors = adj[key][1] rank = ranks[key] for url in urls: if url not in contrib: # out = contrib contrib[url] = rank/num_neighbors else: contrib[url] += rank/num_neighbors return contrib @task(returns=1) def _update_rank(ranks, contrib, factor): """Update the rank of each vertex in the fragment.""" bo = 1.0 - factor for key in contrib: if key in ranks: ranks[key] = bo + factor*contrib[key] return ranks @task(returns=1, dfs=COLLECTION_IN) def merge_ranks(dfs, c1, c2): """Create the final result. Merge and remove duplicates vertex.""" dfs = [pd.DataFrame(ranks.items(), columns=[c1, c2]) for ranks in dfs] dfs = pd.concat(dfs, ignore_index=True)\ .drop_duplicates(ignore_index=True)\ .sort_values(['Rank'], ascending=False, ignore_index=True) return dfs def _pagerank_split(result, nfrag): """Split the list of vertex into nfrag parts. Note: the list of unique vertex and their ranks must be fit in memory. """ result = compss_wait_on(result) result = np.array_split(result, nfrag) outfiles = create_stage_files(nfrag) info = [0] * nfrag for f, table in enumerate(result): save_stage_file(outfiles[f], table) info[f] = generate_info(table, f) return outfiles, info
768
0
22
faeba7f3ca3382662de94211ec44a097d3c7ac9f
1,390
py
Python
UART_py/tela_serial.py
Rodrigo98Matos/Interface-Grafca-Serial
b996655e7376229856116ec3d150f3210a82cb4d
[ "MIT" ]
null
null
null
UART_py/tela_serial.py
Rodrigo98Matos/Interface-Grafca-Serial
b996655e7376229856116ec3d150f3210a82cb4d
[ "MIT" ]
null
null
null
UART_py/tela_serial.py
Rodrigo98Matos/Interface-Grafca-Serial
b996655e7376229856116ec3d150f3210a82cb4d
[ "MIT" ]
null
null
null
import PySimpleGUI as sg from uart_serial import uart arduino = uart()
37.567568
117
0.538129
import PySimpleGUI as sg from uart_serial import uart arduino = uart() class tela: def __init__(self, portas): #Layout sg.theme('Black') layout = [ [sg.Text('Porta:',size=(7,0)),sg.Combo(values=(portas),key='porta')], [sg.Text('Baudrate:',size=(7,0)),sg.Combo(values=([9600,115200]),key='baudrate')], [sg.Checkbox('Dados da Missão',key='dados_missao'),sg.Checkbox('Beacon',key='beacon')], [sg.Button('Continuar')], ] """layout = [ [sg.Text('Nome',size=(5,0)),sg.Input(size=(15,0),key='nome')], [sg.Text('Idade',size=(5,0)),sg.Input(size=(5,0),key='idade')], [sg.Text('Email:')], [sg.Checkbox('Gmail',key='gmail'),sg.Checkbox('Hotmail',key='hotmail'),sg.Checkbox('Yahoo',key='yahoo')], [sg.Radio('Sim','email',key='email_sim'),sg.Radio('Não','email',key='email_nao')], [sg.Button('Enviar dados')], [sg.Output(size=(30,20))] ]""" #Janela self.janela = sg.Window("dados do Usuário").layout(layout) #Extrair os dados da tela self.button, self.values = self.janela.Read() def iniciar(self): while True: self.button, self.values = self.janela.Read() if self.button == sg.WIN_CLOSED: break print(self.values)
1,250
-10
80
a747752e784483f13e0672fa7ef44261d743dd9f
403
py
Python
babybuddy/migrations/0017_promocode_max_usage_per_account.py
amcquistan/babyasst
310a7948f06b71ae0d62593a3b5932abfd4eb444
[ "BSD-2-Clause" ]
null
null
null
babybuddy/migrations/0017_promocode_max_usage_per_account.py
amcquistan/babyasst
310a7948f06b71ae0d62593a3b5932abfd4eb444
[ "BSD-2-Clause" ]
null
null
null
babybuddy/migrations/0017_promocode_max_usage_per_account.py
amcquistan/babyasst
310a7948f06b71ae0d62593a3b5932abfd4eb444
[ "BSD-2-Clause" ]
null
null
null
# Generated by Django 2.2.6 on 2019-11-27 20:28 from django.db import migrations, models
21.210526
49
0.615385
# Generated by Django 2.2.6 on 2019-11-27 20:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('babybuddy', '0016_auto_20191127_1424'), ] operations = [ migrations.AddField( model_name='promocode', name='max_usage_per_account', field=models.IntegerField(default=1), ), ]
0
289
23
838a777e045278ea92893c031457352439926ec4
1,897
py
Python
transact/models.py
BrilliantGrant/Transaction-application
988fdbd6ed8a1fea9ca8366eeb2b30275b727836
[ "MIT", "Unlicense" ]
null
null
null
transact/models.py
BrilliantGrant/Transaction-application
988fdbd6ed8a1fea9ca8366eeb2b30275b727836
[ "MIT", "Unlicense" ]
null
null
null
transact/models.py
BrilliantGrant/Transaction-application
988fdbd6ed8a1fea9ca8366eeb2b30275b727836
[ "MIT", "Unlicense" ]
null
null
null
from django.contrib.auth.models import User from tinymce.models import HTMLField from django.db import models # Create your models here.
25.293333
72
0.710596
from django.contrib.auth.models import User from tinymce.models import HTMLField from django.db import models # Create your models here. class Pic(models.Model): pic = models.ImageField(upload_to = "pics/",null = True) user = models.ForeignKey(User,null=True) pic_name = models.CharField(max_length = 30,null = True) likes = models.IntegerField(default=0) pic_caption = models.TextField(null = True) pub_date = models.DateTimeField(auto_now_add=True,null=True) # profile = models.ForeignKey(Profile, null=True) comments = models.IntegerField(default=0) def __str__(self): return self.pic_name def delete_pic(self): self.delete() def save_pic(self): self.save() def update_caption(self,new_caption): self.pic_caption = new_caption self.save() @classmethod def get_pics_by_user(cls,id): sent_pics = Pic.objects.filter(user_id=id) return sent_pics @classmethod def get_pics_by_id(cls,id): fetched_pic = Pic.objects.get(id = id) return fetched_pic class Meta: ordering = ['-pub_date'] def __str__(self): return self.user.username def save_profile(self): self.save() class Profile(models.Model): username = models.CharField(default='User',max_length=30) email = models.CharField(default='email',max_length=30) profile_pic = models.ImageField(upload_to = "profile/",null=True) Phone_number = models.CharField(max_length =30) Amount = models.CharField(max_length =30) withdraw = models.CharField(max_length =30) Balance = models.CharField(max_length =30) def __str__(self): return self.username def delete_profile(self): self.delete() def save_profile(self): self.save() @classmethod def search_profile(cls,search_term): got_profiles = cls.objects.filter(first_name__icontains = search_term) return got_profiles
504
1,209
45
4a30bc154d6f294fba0d9fd2e54096f76bfb7a5f
553
py
Python
migrations/versions/6564c80d1598_.py
realtimclemans/SafetyHealthDotCloud
c7eca52f3e6519de34b05ba573a5778423c2dae2
[ "MIT" ]
null
null
null
migrations/versions/6564c80d1598_.py
realtimclemans/SafetyHealthDotCloud
c7eca52f3e6519de34b05ba573a5778423c2dae2
[ "MIT" ]
1
2021-02-15T15:58:54.000Z
2021-02-15T15:58:54.000Z
migrations/versions/6564c80d1598_.py
realtimclemans/SafetyHealthDotCloud
c7eca52f3e6519de34b05ba573a5778423c2dae2
[ "MIT" ]
null
null
null
"""empty message Revision ID: 6564c80d1598 Revises: c3c2dc9000d3 Create Date: 2021-06-19 17:03:45.811885 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6564c80d1598' down_revision = 'c3c2dc9000d3' branch_labels = None depends_on = None
19.068966
65
0.687161
"""empty message Revision ID: 6564c80d1598 Revises: c3c2dc9000d3 Create Date: 2021-06-19 17:03:45.811885 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6564c80d1598' down_revision = 'c3c2dc9000d3' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
208
0
46
5eb6460889a29c993a99192a3b46f1a9dae54de9
1,181
py
Python
setup.py
tizz98/xl
4534a1792f878964fedd87432c438ab6364ece49
[ "MIT" ]
1
2018-03-30T17:36:41.000Z
2018-03-30T17:36:41.000Z
setup.py
tizz98/xl
4534a1792f878964fedd87432c438ab6364ece49
[ "MIT" ]
null
null
null
setup.py
tizz98/xl
4534a1792f878964fedd87432c438ab6364ece49
[ "MIT" ]
null
null
null
#!/usr/bin/env python try: from setuptools import setup except ImportError: from distutils.core import setup try: import pypandoc long_description = pypandoc.convert('README.md', 'rst') except (IOError, ImportError): with open('README.md') as f: long_description = f.read() from xl import __str_version__, __author__ setup( name='xl', version=__str_version__, description='A nice way of generating excel formulas in python.', long_description=long_description, url='https://github.com/tizz98/xl', download_url='https://github.com/tizz98/xl/tarball/%s' % ( __str_version__ ), author=__author__, author_email='[email protected]', license='MIT', packages=['xl'], keywords='xl excel formulas formula formulae', zip_safe=True, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], )
27.465116
69
0.647756
#!/usr/bin/env python try: from setuptools import setup except ImportError: from distutils.core import setup try: import pypandoc long_description = pypandoc.convert('README.md', 'rst') except (IOError, ImportError): with open('README.md') as f: long_description = f.read() from xl import __str_version__, __author__ setup( name='xl', version=__str_version__, description='A nice way of generating excel formulas in python.', long_description=long_description, url='https://github.com/tizz98/xl', download_url='https://github.com/tizz98/xl/tarball/%s' % ( __str_version__ ), author=__author__, author_email='[email protected]', license='MIT', packages=['xl'], keywords='xl excel formulas formula formulae', zip_safe=True, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], )
0
0
0
91c554ac6c77dd73935b5f3788cc38b6a16bd729
420
py
Python
GroupCondition.py
simplymanas/python-learning
75bc99c0dce211fd1bce5f6ce1155e0f4c71d7d0
[ "Apache-2.0" ]
4
2020-08-18T05:29:38.000Z
2021-03-13T19:01:10.000Z
GroupCondition.py
simplymanas/python-learning
75bc99c0dce211fd1bce5f6ce1155e0f4c71d7d0
[ "Apache-2.0" ]
null
null
null
GroupCondition.py
simplymanas/python-learning
75bc99c0dce211fd1bce5f6ce1155e0f4c71d7d0
[ "Apache-2.0" ]
1
2020-08-29T12:57:17.000Z
2020-08-29T12:57:17.000Z
# all, any for group condition check # Manas Dash # 22th July 2020 # think of any (or) and all (and) as series of logical or and and operators healthy_percentage = 100 have_money = 0 no_of_friends = 5 mental_happiness = [ healthy_percentage > 50, have_money > 0, no_of_friends >= 1 ] if all(mental_happiness): print('happiness inside') if any(mental_happiness): print('happiness outside') # happiness outside
17.5
75
0.738095
# all, any for group condition check # Manas Dash # 22th July 2020 # think of any (or) and all (and) as series of logical or and and operators healthy_percentage = 100 have_money = 0 no_of_friends = 5 mental_happiness = [ healthy_percentage > 50, have_money > 0, no_of_friends >= 1 ] if all(mental_happiness): print('happiness inside') if any(mental_happiness): print('happiness outside') # happiness outside
0
0
0
41559822f3cd5754bbcded35318328ac3c23e9ab
12,012
py
Python
zx64c/ast.py
khrynczenko/zx64c
5a95bef1dff281266ea3f0d0bfd63d27ab5e9965
[ "Apache-2.0" ]
null
null
null
zx64c/ast.py
khrynczenko/zx64c
5a95bef1dff281266ea3f0d0bfd63d27ab5e9965
[ "Apache-2.0" ]
null
null
null
zx64c/ast.py
khrynczenko/zx64c
5a95bef1dff281266ea3f0d0bfd63d27ab5e9965
[ "Apache-2.0" ]
null
null
null
from __future__ import annotations import abc from typing import List, Text, TypeVar, Generic from abc import ABC from functools import singledispatchmethod from dataclasses import dataclass from zx64c.types import Type, Callable T = TypeVar("T") @SjasmplusSnapshotProgram.__eq__.register @Program.__eq__.register @dataclass @Function.__eq__.register @Block.__eq__.register @If.__eq__.register @Print.__eq__.register @Let.__eq__.register @Assignment.__eq__.register @Return.__eq__.register @Equal.__eq__.register @NotEqual.__eq__.register @Addition.__eq__.register @Subtraction.__eq__.register @Negation.__eq__.register @FunctionCall.__eq__.register @Identifier.__eq__.register @Unsignedint.__eq__.register @Bool.__eq__.register
24.217742
88
0.635614
from __future__ import annotations import abc from typing import List, Text, TypeVar, Generic from abc import ABC from functools import singledispatchmethod from dataclasses import dataclass from zx64c.types import Type, Callable T = TypeVar("T") class AstVisitor(ABC, Generic[T]): @abc.abstractmethod def visit_program(self, node: Program) -> T: pass @abc.abstractmethod def visit_function(self, node: Function) -> T: pass @abc.abstractmethod def visit_block(self, node: Block) -> T: pass @abc.abstractmethod def visit_if(self, node: Block) -> T: pass @abc.abstractmethod def visit_print(self, node: Print) -> T: pass @abc.abstractmethod def visit_let(self, node: Assignment) -> T: pass @abc.abstractmethod def visit_return(self, node: Return) -> T: pass @abc.abstractmethod def visit_assignment(self, node: Assignment) -> T: pass @abc.abstractmethod def visit_equal(self, node: Equal) -> T: pass @abc.abstractmethod def visit_not_equal(self, node: NotEqual) -> T: pass @abc.abstractmethod def visit_addition(self, node: Addition) -> T: pass @abc.abstractmethod def visit_subtraction(self, node: Subtraction) -> T: pass @abc.abstractmethod def visit_negation(self, node: Negation) -> T: pass @abc.abstractmethod def visit_function_call(self, node: FunctionCall) -> T: pass @abc.abstractmethod def visit_identifier(self, node: Identifier) -> T: pass @abc.abstractmethod def visit_unsignedint(self, node: Unsignedint) -> T: pass @abc.abstractmethod def visit_bool(self, node: Bool) -> T: pass class SourceContext: def __init__(self, line: int, column: int): self._line = line self._column = column def __eq__(self, rhs: SourceContext) -> bool: return self._line == rhs._line and self._column == rhs._column @property def line(self) -> int: return self._line @property def column(self) -> int: return self._column class Ast(ABC): def __init__(self, context: SourceContext): self._context = context @property def context(self) -> SourceContext: return self._context @abc.abstractmethod def visit(self, v: AstVisitor[T]) -> T: pass @abc.abstractmethod def __eq__(self, rhs: Ast) -> bool: pass class SjasmplusSnapshotProgram(Ast): def __init__(self, program: Program, source_name: Text): super().__init__(program.context) self.program = program self.source_name = source_name @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_program(self) @SjasmplusSnapshotProgram.__eq__.register def __eq__(self, rhs: SjasmplusSnapshotProgram) -> bool: return self.program == rhs.program and self.source_name == rhs._source_name class Program(Ast): def __init__(self, functions: List[Function], context: SourceContext): super().__init__(context) self.functions = functions @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_program(self) @Program.__eq__.register def _(self, rhs: Program) -> bool: return self.functions == rhs.functions and self.context == rhs.context @dataclass class Parameter: name: str type_id: Type class Function(Ast): def __init__( self, name: str, parameters: List[Parameter], return_type: Type, code_block: Block, context: SourceContext, ): super().__init__(context) self.name = name self.parameters = parameters self.return_type = return_type self.code_block = code_block self.type = Callable(return_type, [p.type_id for p in parameters]) @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_function(self) @Function.__eq__.register def _(self, rhs: Function) -> bool: return ( self.name == rhs.name and self.parameters == rhs.parameters and self.return_type == rhs.return_type and self.code_block == rhs.code_block ) class Block(Ast): def __init__(self, statements: [Ast], context: SourceContext): super().__init__(context) self.statements = statements @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_block(self) @Block.__eq__.register def _(self, rhs: Block) -> bool: return self.statements == rhs.statements class If(Ast): def __init__(self, condition: Ast, consequence: Ast, context: SourceContext): super().__init__(context) self.condition = condition self.consequence = consequence @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_if(self) @If.__eq__.register def _(self, rhs: If) -> bool: return self.condition == rhs.condition and self.consequence == rhs.consequence class Print(Ast): def __init__(self, expression: Ast, context: SourceContext): super().__init__(context) self.expression = expression @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_print(self) @Print.__eq__.register def _(self, rhs: Print) -> bool: return self.expression == rhs.expression and self.context == rhs.context class Let(Ast): def __init__(self, name: str, var_type: Type, rhs: Ast, context: SourceContext): super().__init__(context) self.name = name self.var_type = var_type self.rhs = rhs @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_let(self) @Let.__eq__.register def _(self, rhs: Let) -> bool: return ( self.name == rhs.name and self.var_type == rhs.var_type and self.rhs == rhs.rhs and self.context == rhs.context ) class Assignment(Ast): def __init__(self, name: str, rhs: Ast, context: SourceContext): super().__init__(context) self.name = name self.rhs = rhs @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_assignment(self) @Assignment.__eq__.register def _(self, rhs: Assignment) -> bool: return self.name == rhs.name and self.rhs == rhs.rhs and self.context == rhs.context class Return(Ast): def __init__(self, expr: Ast, context: SourceContext): super().__init__(context) self.expr = expr @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_return(self) @Return.__eq__.register def _(self, rhs: Return) -> bool: return self.expr == rhs.expr class Equal(Ast): def __init__(self, lhs: Ast, rhs: Ast, context: SourceContext): super().__init__(context) self.lhs = lhs self.rhs = rhs @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_equal(self) @Equal.__eq__.register def _(self, rhs: Equal) -> bool: return self.lhs == rhs.lhs and self.rhs == rhs.rhs and self.context == rhs.context class NotEqual(Ast): def __init__(self, lhs: Ast, rhs: Ast, context: SourceContext): super().__init__(context) self.lhs = lhs self.rhs = rhs @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_not_equal(self) @NotEqual.__eq__.register def _(self, rhs: NotEqual) -> bool: return self.lhs == rhs.lhs and self.rhs == rhs.rhs and self.context == rhs.context class Addition(Ast): def __init__(self, lhs: Ast, rhs: Ast, context: SourceContext): super().__init__(context) self.lhs = lhs self.rhs = rhs @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_addition(self) @Addition.__eq__.register def _(self, rhs: Addition) -> bool: return self.lhs == rhs.lhs and self.rhs == rhs.rhs and self.context == rhs.context class Subtraction(Ast): def __init__(self, lhs: Ast, rhs: Ast, context: SourceContext): super().__init__(context) self.lhs = lhs self.rhs = rhs @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_subtraction(self) @Subtraction.__eq__.register def _(self, rhs: Subtraction) -> bool: return self.lhs == rhs.lhs and self.rhs == rhs.rhs and self.context == rhs.context class Negation(Ast): def __init__(self, expression: Ast, context: SourceContext): super().__init__(context) self.expression = expression @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_negation(self) @Negation.__eq__.register def _(self, rhs: Negation) -> bool: return self.expression == rhs.expression and self.context == rhs.context class FunctionCall(Ast): def __init__( self, function_name: str, arguments: List[Ast], context: SourceContext ): super().__init__(context) self.function_name = function_name self.arguments = arguments @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_function_call(self) @FunctionCall.__eq__.register def _(self, rhs: FunctionCall) -> bool: return ( self.function_name == rhs.function_name and self.arguments == rhs.arguments and self.context == rhs.context ) class Identifier(Ast): def __init__(self, value: int, context: SourceContext): super().__init__(context) self.value = value @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_identifier(self) @Identifier.__eq__.register def _(self, rhs: Identifier) -> bool: return ( isinstance(rhs, Identifier) and self.value == rhs.value and self.context == self.context ) class Unsignedint(Ast): def __init__(self, value: int, context: SourceContext): super().__init__(context) self.value = value @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_unsignedint(self) @Unsignedint.__eq__.register def _(self, rhs: Unsignedint) -> bool: return ( isinstance(rhs, Unsignedint) and self.value == rhs.value and self.context == self.context ) class Bool(Ast): def __init__(self, value: bool, context: SourceContext): super().__init__(context) self.value = value @singledispatchmethod def __eq__(self, rhs: Ast) -> bool: return False def visit(self, v: AstVisitor[T]) -> T: return v.visit_bool(self) @Bool.__eq__.register def _(self, rhs: Bool) -> bool: return ( isinstance(rhs, Bool) and self.value == rhs.value and self.context == self.context )
7,223
3,096
901
12d6ccc9bc22866f30ca1c766583f034776a1025
4,946
py
Python
src/lib/recorder.py
l-maia/viseron
d762be93db74f780db13ac332bf8673c41592aa9
[ "MIT" ]
null
null
null
src/lib/recorder.py
l-maia/viseron
d762be93db74f780db13ac332bf8673c41592aa9
[ "MIT" ]
null
null
null
src/lib/recorder.py
l-maia/viseron
d762be93db74f780db13ac332bf8673c41592aa9
[ "MIT" ]
null
null
null
import datetime import logging import os from threading import Thread import cv2 from lib.cleanup import SegmentCleanup from lib.helpers import draw_objects from lib.mqtt.camera import MQTTCamera from lib.segments import Segments LOGGER = logging.getLogger(__name__)
35.84058
88
0.641326
import datetime import logging import os from threading import Thread import cv2 from lib.cleanup import SegmentCleanup from lib.helpers import draw_objects from lib.mqtt.camera import MQTTCamera from lib.segments import Segments LOGGER = logging.getLogger(__name__) class FFMPEGRecorder: def __init__(self, config, detection_lock, mqtt_queue): self._logger = logging.getLogger(__name__ + "." + config.camera.name_slug) if getattr(config.recorder.logging, "level", None): self._logger.setLevel(config.recorder.logging.level) elif getattr(config.camera.logging, "level", None): self._logger.setLevel(config.camera.logging.level) self._logger.debug("Initializing ffmpeg recorder") self.config = config self._mqtt_queue = mqtt_queue self.is_recording = False self.last_recording_start = None self.last_recording_end = None self._event_start = None self._event_end = None self._recording_name = None segments_folder = os.path.join( config.recorder.segments_folder, config.camera.name ) self.create_directory(segments_folder) self._segmenter = Segments( self._logger, config, segments_folder, detection_lock ) self._segment_cleanup = SegmentCleanup(config) self._mqtt_devices = {} if self.config.recorder.thumbnail.send_to_mqtt: self._mqtt_devices["latest_thumbnail"] = MQTTCamera( config, mqtt_queue, object_id="latest_thumbnail" ) def on_connect(self, client): for device in self._mqtt_devices.values(): device.on_connect(client) def subfolder_name(self, today): return ( f"{today.year:04}-{today.month:02}-{today.day:02}/{self.config.camera.name}" ) def create_thumbnail(self, file_name, frame, objects, resolution): draw_objects( frame.decoded_frame_umat_rgb, objects, resolution, ) cv2.imwrite(file_name, frame.decoded_frame_umat_rgb) if self.config.recorder.thumbnail.save_to_disk: thumbnail_folder = os.path.join( self.config.recorder.folder, "thumbnails", self.config.camera.name ) self.create_directory(thumbnail_folder) self._logger.debug(f"Saving thumbnail in {thumbnail_folder}") if not cv2.imwrite( os.path.join(thumbnail_folder, "latest_thumbnail.jpg"), frame.decoded_frame_umat_rgb, ): self._logger.error("Failed saving thumbnail to disk") if self.config.recorder.thumbnail.send_to_mqtt and self._mqtt_devices: ret, jpg = cv2.imencode(".jpg", frame.decoded_frame_umat_rgb) if ret: self._mqtt_devices["latest_thumbnail"].publish(jpg.tobytes()) def create_directory(self, path): try: if not os.path.isdir(path): self._logger.debug(f"Creating folder {path}") os.makedirs(path) except FileExistsError: pass def start_recording(self, frame, objects, resolution): self._logger.info("Starting recorder") self.is_recording = True self._segment_cleanup.pause() now = datetime.datetime.now() self.last_recording_start = now.isoformat() self.last_recording_end = None self._event_start = int(now.timestamp()) if self.config.recorder.folder is None: self._logger.error("Output directory is not specified") return # Create filename now = datetime.datetime.now() video_name = f"{now.strftime('%H:%M:%S')}.{self.config.recorder.extension}" thumbnail_name = f"{now.strftime('%H:%M:%S')}.jpg" # Create foldername subfolder = self.subfolder_name(now) full_path = os.path.join(self.config.recorder.folder, subfolder) self.create_directory(full_path) if frame: self.create_thumbnail( os.path.join(full_path, thumbnail_name), frame, objects, resolution ) self._recording_name = os.path.join(full_path, video_name) def concat_segments(self): self._segmenter.concat_segments( self._event_start - self.config.recorder.lookback, self._event_end, self._recording_name, ) # Dont resume cleanup if new recording started during encoding if not self.is_recording: self._segment_cleanup.resume() def stop_recording(self): self._logger.info("Stopping recorder") self.is_recording = False now = datetime.datetime.now() self.last_recording_end = now.isoformat() self._event_end = int(now.timestamp()) concat_thread = Thread(target=self.concat_segments) concat_thread.start()
4,437
0
238
6ad5c56d611d041bd4e20428bfb9dda30e760ae2
810
py
Python
src/USEFUL/basic_examples/example_setdefault.py
binxiangni/Python-and-Algorithms-and-Data-Structures
d2c082d261a68b06f533703867ae8a90ac7f4df1
[ "MIT" ]
5
2017-08-03T06:33:49.000Z
2021-08-06T13:20:57.000Z
src/USEFUL/basic_examples/example_setdefault.py
ritahu/Python-and-Algorithms-and-Data-Structures
d2c082d261a68b06f533703867ae8a90ac7f4df1
[ "MIT" ]
null
null
null
src/USEFUL/basic_examples/example_setdefault.py
ritahu/Python-and-Algorithms-and-Data-Structures
d2c082d261a68b06f533703867ae8a90ac7f4df1
[ "MIT" ]
6
2017-04-27T13:30:49.000Z
2020-11-01T20:28:55.000Z
#!/usr/bin/env python __author__ = "bt3" if __name__ == '__main__': test_setdef()
20.769231
51
0.549383
#!/usr/bin/env python __author__ = "bt3" def usual_dict(dict_data): newdata = {} for k, v in dict_data: if k in newdata: newdata[k].append(v) else: newdata[k] = [v] return newdata def setdefault_dict(dict_data): newdata = {} for k, v in dict_data: newdata.setdefault(k, []).append(v) return newdata def test_setdef(module_name='this module'): dict_data = (('key1', 'value1'), ('key1', 'value2'), ('key2', 'value3'), ('key2', 'value4'), ('key2', 'value5'),) print(usual_dict(dict_data)) print(setdefault_dict(dict_data)) s = 'Tests in {name} have {con}!' print(s.format(name=module_name, con='passed')) if __name__ == '__main__': test_setdef()
648
0
69
aa3156cdaa41c2efd05f58391fef51ddc65a1c89
423
py
Python
examples/PyObjC/pbplugin/PyTestPlugin.py
flupke/py2app
8eb6c618f9c63d6ac970fb145a7f7782b71bcb4d
[ "MIT" ]
81
2015-11-29T12:17:39.000Z
2021-08-02T07:06:51.000Z
examples/PyObjC/pbplugin/PyTestPlugin.py
flupke/py2app
8eb6c618f9c63d6ac970fb145a7f7782b71bcb4d
[ "MIT" ]
11
2016-10-23T16:34:10.000Z
2022-01-30T05:45:54.000Z
examples/PyObjC/pbplugin/PyTestPlugin.py
flupke/py2app
8eb6c618f9c63d6ac970fb145a7f7782b71bcb4d
[ "MIT" ]
21
2016-01-25T18:46:31.000Z
2021-01-08T17:38:03.000Z
from Foundation import * import objc import sys print "PyTestPlugin", __name__ print u"[inside] currentBundle %r" % (objc.currentBundle(),)
23.5
60
0.664303
from Foundation import * import objc import sys class PyTestPlugin(NSObject): def init(self): self = super(PyTestPlugin, self).init() print 'class load!!' print "Hello from py2app" print "frozen", repr(getattr(sys, "frozen", None)) return self class PyTestPlugin2(NSObject): pass print "PyTestPlugin", __name__ print u"[inside] currentBundle %r" % (objc.currentBundle(),)
184
26
72
4daa46c2152e35f2d6fed9c1e7f117f7a7694955
439
py
Python
tests/grammar/grammars/simple.py
AlexandreH/securify2
2d2ba0e1c20cdda550120ecdc1a7164db9b90e3c
[ "Apache-2.0" ]
258
2020-01-23T16:58:38.000Z
2022-03-31T17:29:25.000Z
tests/grammar/grammars/simple.py
sirhashalot/securify2
6852707449577add14bafce8e304946b3490a977
[ "Apache-2.0" ]
34
2020-01-30T06:11:58.000Z
2022-02-27T07:53:17.000Z
tests/grammar/grammars/simple.py
sirhashalot/securify2
6852707449577add14bafce8e304946b3490a977
[ "Apache-2.0" ]
66
2020-01-28T09:23:05.000Z
2022-03-22T09:01:43.000Z
from __future__ import annotations from typing import Sequence, Union, Optional from securify.grammar import abstract_production, production @abstract_production @abstract_production @production @production @production @production
12.911765
60
0.738041
from __future__ import annotations from typing import Sequence, Union, Optional from securify.grammar import abstract_production, production @abstract_production class Base: pass @abstract_production class AOrC(Base): pass @production class A(AOrC, Base): optional: Optional[Base] @production class B(Base): seq: Sequence[AOrC] @production class C(AOrC, Base): single: B @production class E(Base): pass
0
64
132
ab7e4c8ae6107856ac778d397edffb130f2bed1a
2,490
py
Python
includes/vars.py
jerseyshawn/cf-vcap-vars
26effac112b500271e2f5ed298f0e6ab50bd7c4e
[ "MIT" ]
null
null
null
includes/vars.py
jerseyshawn/cf-vcap-vars
26effac112b500271e2f5ed298f0e6ab50bd7c4e
[ "MIT" ]
null
null
null
includes/vars.py
jerseyshawn/cf-vcap-vars
26effac112b500271e2f5ed298f0e6ab50bd7c4e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from os import environ from json import dumps
35.571429
83
0.485944
#!/usr/bin/env python3 from os import environ from json import dumps class CloudFoundry: def __init__(self, **kwargs): self.__CF_VARIABLES__ = {'CF_INSTANCE_ADDR': '', 'CF_INSTANCE_GUID': '', 'CF_INSTANCE_INDEX': '', 'CF_INSTANCE_INTERNAL_IP': '', 'CF_INSTANCE_IP': '', 'CF_INSTANCE_PORT': '', 'CF_INSTANCE_PORTS': [{}], 'CF_STACK': '', 'DATABASE_URL': '', 'HOME': '', 'INSTANCE_GUID': '', 'INSTANCE_INDEX': '', 'LANG': '', 'MEMORY_LIMIT': '', 'PATH': '', 'PORT': '', 'PWD': '', 'TMPDIR': '', 'USER': '', 'VCAP_APP_HOST': '', 'VCAP_APP_PORT': '', 'VCAP_APPLICATION': {}, 'VCAP_SERVICES': {}} if kwargs.get('testing'): self.load_testing_data(**kwargs) else: self.set_cf_variables(**kwargs) def load_testing_data(self, **kwargs): pass def set_cf_variables(self, **kwargs): variables = kwargs.get('variables', None) if isinstance(variables, str): cf_variables = [variable.upper() for variable in variables.split(',')] elif isinstance(variables, list): cf_variables = [variable.upper() for variable in variables] else: cf_variables = self.__CF_VARIABLES__ for cf_variable in cf_variables: # found in env if cf_variable in environ: setattr(self,str(cf_variable).lower(),environ[cf_variable]) # not in env, but a known cf var elif cf_variable in self.__CF_VARIABLES__: setattr(self, str(cf_variable).lower(), self.__CF_VARIABLES__[cf_variable]) # not in env and not defaulted else: setattr(self, str(cf_variable).lower(), '') def get_cf_variables(self, **kwargs): variables = {} for variable in sorted(self.__CF_VARIABLES__): variable = variable.lower() if hasattr(self, variable): variables[variable] = getattr(self,variable) print(dumps(variables, indent=4)) return(variables)
2,297
-2
121
5e95808d29aa13d8d01042969663da9c93db20f1
212
py
Python
virtual_box_tools/custom_argument_parser.py
FunTimeCoding/virtualbox-tools
bc6b4ad90d711fda64f76275f65e6c01ae3caa3f
[ "MIT" ]
4
2017-08-05T10:51:34.000Z
2019-06-24T02:56:31.000Z
virtual_box_tools/custom_argument_parser.py
FunTimeCoding/virtualbox-tools
bc6b4ad90d711fda64f76275f65e6c01ae3caa3f
[ "MIT" ]
null
null
null
virtual_box_tools/custom_argument_parser.py
FunTimeCoding/virtualbox-tools
bc6b4ad90d711fda64f76275f65e6c01ae3caa3f
[ "MIT" ]
1
2017-08-05T09:23:51.000Z
2017-08-05T09:23:51.000Z
from argparse import ArgumentParser from sys import exit, stderr
21.2
45
0.693396
from argparse import ArgumentParser from sys import exit, stderr class CustomArgumentParser(ArgumentParser): def error(self, message) -> None: stderr.write('Error: %s\n' % message) exit(1)
75
22
49
f6bbb564e37b6b680c5c92655011416fe930bcbf
2,043
py
Python
vega/__init__.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
vega/__init__.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
vega/__init__.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Vega's methods.""" __all__ = [ "set_backend", "is_cpu_device", "is_gpu_device", "is_npu_device", "is_ms_backend", "is_tf_backend", "is_torch_backend", "get_devices", "ClassFactory", "ClassType", "FileOps", "run", "init_cluster_args", "module_existed", "TrialAgent", "get_network", "get_dataset", "get_trainer", "get_quota", ] __version__ = "1.8.0" import sys if sys.version_info < (3, 6): sys.exit('Sorry, Python < 3.6 is not supported.') from .common.backend_register import set_backend, is_cpu_device, is_gpu_device, is_npu_device, \ is_ms_backend, is_tf_backend, is_torch_backend, get_devices from .common.class_factory import ClassFactory, ClassType from .common.file_ops import FileOps from .core import run, init_cluster_args, module_existed from .trainer.trial_agent import TrialAgent from . import quota def get_network(name, **kwargs): """Return network.""" return ClassFactory.get_cls(ClassType.NETWORK, name)(**kwargs) def get_dataset(name, **kwargs): """Return dataset.""" return ClassFactory.get_cls(ClassType.DATASET, name)(**kwargs) def get_trainer(name="Trainer", **kwargs): """Return trainer.""" return ClassFactory.get_cls(ClassType.TRAINER, name)(**kwargs) def get_quota(**kwargs): """Return quota.""" return ClassFactory.get_cls(ClassType.QUOTA, "Quota")(**kwargs)
28.375
96
0.714146
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Vega's methods.""" __all__ = [ "set_backend", "is_cpu_device", "is_gpu_device", "is_npu_device", "is_ms_backend", "is_tf_backend", "is_torch_backend", "get_devices", "ClassFactory", "ClassType", "FileOps", "run", "init_cluster_args", "module_existed", "TrialAgent", "get_network", "get_dataset", "get_trainer", "get_quota", ] __version__ = "1.8.0" import sys if sys.version_info < (3, 6): sys.exit('Sorry, Python < 3.6 is not supported.') from .common.backend_register import set_backend, is_cpu_device, is_gpu_device, is_npu_device, \ is_ms_backend, is_tf_backend, is_torch_backend, get_devices from .common.class_factory import ClassFactory, ClassType from .common.file_ops import FileOps from .core import run, init_cluster_args, module_existed from .trainer.trial_agent import TrialAgent from . import quota def get_network(name, **kwargs): """Return network.""" return ClassFactory.get_cls(ClassType.NETWORK, name)(**kwargs) def get_dataset(name, **kwargs): """Return dataset.""" return ClassFactory.get_cls(ClassType.DATASET, name)(**kwargs) def get_trainer(name="Trainer", **kwargs): """Return trainer.""" return ClassFactory.get_cls(ClassType.TRAINER, name)(**kwargs) def get_quota(**kwargs): """Return quota.""" return ClassFactory.get_cls(ClassType.QUOTA, "Quota")(**kwargs)
0
0
0
a3fd214bd3ac94e9556d5163c8b69ad52bfd9956
13,033
py
Python
colour/models/tests/test_cie_lab.py
MaxSchambach/colour
3f3685d616fda4be58cec20bc1e16194805d7e2d
[ "BSD-3-Clause" ]
null
null
null
colour/models/tests/test_cie_lab.py
MaxSchambach/colour
3f3685d616fda4be58cec20bc1e16194805d7e2d
[ "BSD-3-Clause" ]
null
null
null
colour/models/tests/test_cie_lab.py
MaxSchambach/colour
3f3685d616fda4be58cec20bc1e16194805d7e2d
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.models.cie_lab` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from itertools import permutations from colour.models import XYZ_to_Lab, Lab_to_XYZ, Lab_to_LCHab, LCHab_to_Lab from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'TestXYZ_to_Lab', 'TestLab_to_XYZ', 'TestLab_to_LCHab', 'TestLCHab_to_Lab' ] class TestXYZ_to_Lab(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.XYZ_to_Lab` definition unit tests methods. """ def test_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition. """ np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.20654008, 0.12197225, 0.05136952])), np.array([41.52787529, 52.63858304, 26.92317922]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.14222010, 0.23042768, 0.10495772])), np.array([55.11636304, -41.08791787, 30.91825778]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.07818780, 0.06157201, 0.28099326])), np.array([29.80565520, 20.01830466, -48.34913874]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.44757, 0.40745])), np.array([41.52787529, 38.48089305, -5.73295122]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.34570, 0.35850])), np.array([41.52787529, 51.19354174, 19.91843098]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.34570, 0.35850, 1.00000])), np.array([41.52787529, 51.19354174, 19.91843098]), decimal=7) def test_n_dimensional_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition n-dimensional support. """ XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) illuminant = np.array([0.31270, 0.32900]) Lab = XYZ_to_Lab(XYZ, illuminant) XYZ = np.tile(XYZ, (6, 1)) Lab = np.tile(Lab, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7) illuminant = np.tile(illuminant, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7) XYZ = np.reshape(XYZ, (2, 3, 3)) illuminant = np.reshape(illuminant, (2, 3, 2)) Lab = np.reshape(Lab, (2, 3, 3)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7) def test_domain_range_scale_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition domain and range scale support. """ XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) illuminant = np.array([0.31270, 0.32900]) Lab = XYZ_to_Lab(XYZ, illuminant) d_r = (('reference', 1, 1), (1, 1, 0.01), (100, 100, 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( XYZ_to_Lab(XYZ * factor_a, illuminant), Lab * factor_b, decimal=7) @ignore_numpy_errors def test_nan_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: XYZ = np.array(case) illuminant = np.array(case[0:2]) XYZ_to_Lab(XYZ, illuminant) class TestLab_to_XYZ(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.Lab_to_XYZ` definition unit tests methods. """ def test_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition. """ np.testing.assert_almost_equal( Lab_to_XYZ(np.array([41.52787529, 52.63858304, 26.92317922])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ(np.array([55.11636304, -41.08791787, 30.91825778])), np.array([0.14222010, 0.23042768, 0.10495772]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ(np.array([29.80565520, 20.01830466, -48.34913874])), np.array([0.07818780, 0.06157201, 0.28099326]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 38.48089305, -5.73295122]), np.array([0.44757, 0.40745])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 51.19354174, 19.91843098]), np.array([0.34570, 0.35850])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 51.19354174, 19.91843098]), np.array([0.34570, 0.35850, 1.00000])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) def test_n_dimensional_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition n-dimensional support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) illuminant = np.array([0.31270, 0.32900]) XYZ = Lab_to_XYZ(Lab, illuminant) Lab = np.tile(Lab, (6, 1)) XYZ = np.tile(XYZ, (6, 1)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7) illuminant = np.tile(illuminant, (6, 1)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7) Lab = np.reshape(Lab, (2, 3, 3)) illuminant = np.reshape(illuminant, (2, 3, 2)) XYZ = np.reshape(XYZ, (2, 3, 3)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7) def test_domain_range_scale_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition domain and range scale support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) illuminant = np.array([0.31270, 0.32900]) XYZ = Lab_to_XYZ(Lab, illuminant) d_r = (('reference', 1, 1), (1, 0.01, 1), (100, 1, 100)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( Lab_to_XYZ(Lab * factor_a, illuminant), XYZ * factor_b, decimal=7) @ignore_numpy_errors def test_nan_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: Lab = np.array(case) illuminant = np.array(case[0:2]) Lab_to_XYZ(Lab, illuminant) class TestLab_to_LCHab(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.Lab_to_LCHab` definition unit tests methods. """ def test_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition. """ np.testing.assert_almost_equal( Lab_to_LCHab(np.array([41.52787529, 52.63858304, 26.92317922])), np.array([41.52787529, 59.12425901, 27.08848784]), decimal=7) np.testing.assert_almost_equal( Lab_to_LCHab(np.array([55.11636304, -41.08791787, 30.91825778])), np.array([55.11636304, 51.42135412, 143.03889556]), decimal=7) np.testing.assert_almost_equal( Lab_to_LCHab(np.array([29.80565520, 20.01830466, -48.34913874])), np.array([29.80565520, 52.32945383, 292.49133666]), decimal=7) def test_n_dimensional_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition n-dimensional arrays support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) LCHab = Lab_to_LCHab(Lab) Lab = np.tile(Lab, (6, 1)) LCHab = np.tile(LCHab, (6, 1)) np.testing.assert_almost_equal(Lab_to_LCHab(Lab), LCHab, decimal=7) Lab = np.reshape(Lab, (2, 3, 3)) LCHab = np.reshape(LCHab, (2, 3, 3)) np.testing.assert_almost_equal(Lab_to_LCHab(Lab), LCHab, decimal=7) def test_domain_range_scale_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition domain and range scale support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) LCHab = Lab_to_LCHab(Lab) d_r = (('reference', 1, 1), (1, 0.01, np.array([0.01, 0.01, 1 / 360])), (100, 1, np.array([1, 1, 1 / 3.6]))) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( Lab_to_LCHab(Lab * factor_a), LCHab * factor_b, decimal=7) @ignore_numpy_errors def test_nan_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: Lab = np.array(case) Lab_to_LCHab(Lab) class TestLCHab_to_Lab(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.LCHab_to_Lab` definition unit tests methods. """ def test_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition. """ np.testing.assert_almost_equal( LCHab_to_Lab(np.array([41.52787529, 59.12425901, 27.08848784])), np.array([41.52787529, 52.63858304, 26.92317922]), decimal=7) np.testing.assert_almost_equal( LCHab_to_Lab(np.array([55.11636304, 51.42135412, 143.03889556])), np.array([55.11636304, -41.08791787, 30.91825778]), decimal=7) np.testing.assert_almost_equal( LCHab_to_Lab(np.array([29.80565520, 52.32945383, 292.49133666])), np.array([29.80565520, 20.01830466, -48.34913874]), decimal=7) def test_n_dimensional_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition n-dimensional arrays support. """ LCHab = np.array([41.52787529, 59.12425901, 27.08848784]) Lab = LCHab_to_Lab(LCHab) LCHab = np.tile(LCHab, (6, 1)) Lab = np.tile(Lab, (6, 1)) np.testing.assert_almost_equal(LCHab_to_Lab(LCHab), Lab, decimal=7) LCHab = np.reshape(LCHab, (2, 3, 3)) Lab = np.reshape(Lab, (2, 3, 3)) np.testing.assert_almost_equal(LCHab_to_Lab(LCHab), Lab, decimal=7) def test_domain_range_scale_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition domain and range scale support. """ LCHab = np.array([41.52787529, 59.12425901, 27.08848784]) Lab = LCHab_to_Lab(LCHab) d_r = (('reference', 1, 1), (1, np.array([0.01, 0.01, 1 / 360]), 0.01), (100, np.array([1, 1, 1 / 3.6]), 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( LCHab_to_Lab(LCHab * factor_a), Lab * factor_b, decimal=7) @ignore_numpy_errors def test_nan_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: LCHab = np.array(case) LCHab_to_Lab(LCHab) if __name__ == '__main__': unittest.main()
34.028721
79
0.58559
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.models.cie_lab` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from itertools import permutations from colour.models import XYZ_to_Lab, Lab_to_XYZ, Lab_to_LCHab, LCHab_to_Lab from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'TestXYZ_to_Lab', 'TestLab_to_XYZ', 'TestLab_to_LCHab', 'TestLCHab_to_Lab' ] class TestXYZ_to_Lab(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.XYZ_to_Lab` definition unit tests methods. """ def test_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition. """ np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.20654008, 0.12197225, 0.05136952])), np.array([41.52787529, 52.63858304, 26.92317922]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.14222010, 0.23042768, 0.10495772])), np.array([55.11636304, -41.08791787, 30.91825778]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab(np.array([0.07818780, 0.06157201, 0.28099326])), np.array([29.80565520, 20.01830466, -48.34913874]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.44757, 0.40745])), np.array([41.52787529, 38.48089305, -5.73295122]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.34570, 0.35850])), np.array([41.52787529, 51.19354174, 19.91843098]), decimal=7) np.testing.assert_almost_equal( XYZ_to_Lab( np.array([0.20654008, 0.12197225, 0.05136952]), np.array([0.34570, 0.35850, 1.00000])), np.array([41.52787529, 51.19354174, 19.91843098]), decimal=7) def test_n_dimensional_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition n-dimensional support. """ XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) illuminant = np.array([0.31270, 0.32900]) Lab = XYZ_to_Lab(XYZ, illuminant) XYZ = np.tile(XYZ, (6, 1)) Lab = np.tile(Lab, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7) illuminant = np.tile(illuminant, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7) XYZ = np.reshape(XYZ, (2, 3, 3)) illuminant = np.reshape(illuminant, (2, 3, 2)) Lab = np.reshape(Lab, (2, 3, 3)) np.testing.assert_almost_equal( XYZ_to_Lab(XYZ, illuminant), Lab, decimal=7) def test_domain_range_scale_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition domain and range scale support. """ XYZ = np.array([0.20654008, 0.12197225, 0.05136952]) illuminant = np.array([0.31270, 0.32900]) Lab = XYZ_to_Lab(XYZ, illuminant) d_r = (('reference', 1, 1), (1, 1, 0.01), (100, 100, 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( XYZ_to_Lab(XYZ * factor_a, illuminant), Lab * factor_b, decimal=7) @ignore_numpy_errors def test_nan_XYZ_to_Lab(self): """ Tests :func:`colour.models.cie_lab.XYZ_to_Lab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: XYZ = np.array(case) illuminant = np.array(case[0:2]) XYZ_to_Lab(XYZ, illuminant) class TestLab_to_XYZ(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.Lab_to_XYZ` definition unit tests methods. """ def test_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition. """ np.testing.assert_almost_equal( Lab_to_XYZ(np.array([41.52787529, 52.63858304, 26.92317922])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ(np.array([55.11636304, -41.08791787, 30.91825778])), np.array([0.14222010, 0.23042768, 0.10495772]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ(np.array([29.80565520, 20.01830466, -48.34913874])), np.array([0.07818780, 0.06157201, 0.28099326]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 38.48089305, -5.73295122]), np.array([0.44757, 0.40745])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 51.19354174, 19.91843098]), np.array([0.34570, 0.35850])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) np.testing.assert_almost_equal( Lab_to_XYZ( np.array([41.52787529, 51.19354174, 19.91843098]), np.array([0.34570, 0.35850, 1.00000])), np.array([0.20654008, 0.12197225, 0.05136952]), decimal=7) def test_n_dimensional_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition n-dimensional support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) illuminant = np.array([0.31270, 0.32900]) XYZ = Lab_to_XYZ(Lab, illuminant) Lab = np.tile(Lab, (6, 1)) XYZ = np.tile(XYZ, (6, 1)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7) illuminant = np.tile(illuminant, (6, 1)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7) Lab = np.reshape(Lab, (2, 3, 3)) illuminant = np.reshape(illuminant, (2, 3, 2)) XYZ = np.reshape(XYZ, (2, 3, 3)) np.testing.assert_almost_equal( Lab_to_XYZ(Lab, illuminant), XYZ, decimal=7) def test_domain_range_scale_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition domain and range scale support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) illuminant = np.array([0.31270, 0.32900]) XYZ = Lab_to_XYZ(Lab, illuminant) d_r = (('reference', 1, 1), (1, 0.01, 1), (100, 1, 100)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( Lab_to_XYZ(Lab * factor_a, illuminant), XYZ * factor_b, decimal=7) @ignore_numpy_errors def test_nan_Lab_to_XYZ(self): """ Tests :func:`colour.models.cie_lab.Lab_to_XYZ` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: Lab = np.array(case) illuminant = np.array(case[0:2]) Lab_to_XYZ(Lab, illuminant) class TestLab_to_LCHab(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.Lab_to_LCHab` definition unit tests methods. """ def test_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition. """ np.testing.assert_almost_equal( Lab_to_LCHab(np.array([41.52787529, 52.63858304, 26.92317922])), np.array([41.52787529, 59.12425901, 27.08848784]), decimal=7) np.testing.assert_almost_equal( Lab_to_LCHab(np.array([55.11636304, -41.08791787, 30.91825778])), np.array([55.11636304, 51.42135412, 143.03889556]), decimal=7) np.testing.assert_almost_equal( Lab_to_LCHab(np.array([29.80565520, 20.01830466, -48.34913874])), np.array([29.80565520, 52.32945383, 292.49133666]), decimal=7) def test_n_dimensional_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition n-dimensional arrays support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) LCHab = Lab_to_LCHab(Lab) Lab = np.tile(Lab, (6, 1)) LCHab = np.tile(LCHab, (6, 1)) np.testing.assert_almost_equal(Lab_to_LCHab(Lab), LCHab, decimal=7) Lab = np.reshape(Lab, (2, 3, 3)) LCHab = np.reshape(LCHab, (2, 3, 3)) np.testing.assert_almost_equal(Lab_to_LCHab(Lab), LCHab, decimal=7) def test_domain_range_scale_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition domain and range scale support. """ Lab = np.array([41.52787529, 52.63858304, 26.92317922]) LCHab = Lab_to_LCHab(Lab) d_r = (('reference', 1, 1), (1, 0.01, np.array([0.01, 0.01, 1 / 360])), (100, 1, np.array([1, 1, 1 / 3.6]))) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( Lab_to_LCHab(Lab * factor_a), LCHab * factor_b, decimal=7) @ignore_numpy_errors def test_nan_Lab_to_LCHab(self): """ Tests :func:`colour.models.cie_lab.Lab_to_LCHab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: Lab = np.array(case) Lab_to_LCHab(Lab) class TestLCHab_to_Lab(unittest.TestCase): """ Defines :func:`colour.models.cie_lab.LCHab_to_Lab` definition unit tests methods. """ def test_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition. """ np.testing.assert_almost_equal( LCHab_to_Lab(np.array([41.52787529, 59.12425901, 27.08848784])), np.array([41.52787529, 52.63858304, 26.92317922]), decimal=7) np.testing.assert_almost_equal( LCHab_to_Lab(np.array([55.11636304, 51.42135412, 143.03889556])), np.array([55.11636304, -41.08791787, 30.91825778]), decimal=7) np.testing.assert_almost_equal( LCHab_to_Lab(np.array([29.80565520, 52.32945383, 292.49133666])), np.array([29.80565520, 20.01830466, -48.34913874]), decimal=7) def test_n_dimensional_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition n-dimensional arrays support. """ LCHab = np.array([41.52787529, 59.12425901, 27.08848784]) Lab = LCHab_to_Lab(LCHab) LCHab = np.tile(LCHab, (6, 1)) Lab = np.tile(Lab, (6, 1)) np.testing.assert_almost_equal(LCHab_to_Lab(LCHab), Lab, decimal=7) LCHab = np.reshape(LCHab, (2, 3, 3)) Lab = np.reshape(Lab, (2, 3, 3)) np.testing.assert_almost_equal(LCHab_to_Lab(LCHab), Lab, decimal=7) def test_domain_range_scale_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition domain and range scale support. """ LCHab = np.array([41.52787529, 59.12425901, 27.08848784]) Lab = LCHab_to_Lab(LCHab) d_r = (('reference', 1, 1), (1, np.array([0.01, 0.01, 1 / 360]), 0.01), (100, np.array([1, 1, 1 / 3.6]), 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( LCHab_to_Lab(LCHab * factor_a), Lab * factor_b, decimal=7) @ignore_numpy_errors def test_nan_LCHab_to_Lab(self): """ Tests :func:`colour.models.cie_lab.LCHab_to_Lab` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: LCHab = np.array(case) LCHab_to_Lab(LCHab) if __name__ == '__main__': unittest.main()
0
0
0
84c76c41a480dae4b33646b4f0e6c9ccbdced4c9
17,510
py
Python
letype_extractor.py
olzama/neural-supertagging
340a9b3eaf6427e5ec475cd03bc6f4b3d4891ba4
[ "MIT" ]
null
null
null
letype_extractor.py
olzama/neural-supertagging
340a9b3eaf6427e5ec475cd03bc6f4b3d4891ba4
[ "MIT" ]
null
null
null
letype_extractor.py
olzama/neural-supertagging
340a9b3eaf6427e5ec475cd03bc6f4b3d4891ba4
[ "MIT" ]
null
null
null
from delphin import tdl, itsdb from delphin.tokens import YYTokenLattice import glob, sys, pathlib import json, pickle import numpy as np from collections import OrderedDict import pos_map from datetime import datetime CONTEXT_WINDOW = 2 DEV = ['ws212', 'ecpa'] TEST = ['cb', 'ecpr', 'jhk', 'jhu', 'tgk', 'tgu', 'psk', 'psu', #'rondane', 'vm32', 'ws213', 'ws214', 'petet', 'wsj23'] IGNORE = ['ntucle', 'omw', 'wlb03', 'wnb03'] NONTRAIN = DEV + TEST + IGNORE class LexTypeExtractor: ''' Assume a numpy table coming in. Get e.g. tokens 2 through 5 in sentences 4 and 5, for the test suite #20 in the data. ''' if __name__ == "__main__": args = sys.argv[1:] dt_str = '-'.join(str(datetime.now()).split()).replace(':','.') run_id = sys.argv[3] + dt_str if len(sys.argv) > 3: autoreg = sys.argv[4] == 'autoreg' out_dir = './output/' + run_id pathlib.Path(out_dir).mkdir(parents=True, exist_ok=False) le = LexTypeExtractor() le.parse_lexicons(args[0]) le.stats['total lextypes'] = len(le.lextypes) if autoreg: le.process_testsuites_autoreg(args[1],le.lextypes,out_dir) else: le.process_testsuites_nonautoreg(args[1],le.lextypes,out_dir) with open(out_dir + '/lextypes','wb') as f: lextypes = set([str(v) for v in list(le.lextypes.values())]) pickle.dump(lextypes,f)
46.693333
116
0.525871
from delphin import tdl, itsdb from delphin.tokens import YYTokenLattice import glob, sys, pathlib import json, pickle import numpy as np from collections import OrderedDict import pos_map from datetime import datetime CONTEXT_WINDOW = 2 DEV = ['ws212', 'ecpa'] TEST = ['cb', 'ecpr', 'jhk', 'jhu', 'tgk', 'tgu', 'psk', 'psu', #'rondane', 'vm32', 'ws213', 'ws214', 'petet', 'wsj23'] IGNORE = ['ntucle', 'omw', 'wlb03', 'wnb03'] NONTRAIN = DEV + TEST + IGNORE class LexTypeExtractor: def __init__(self): self.stats = {'corpora': [], 'failed corpora': [], 'tokens': {}, 'total lextypes': 0} def parse_lexicons(self,lexicons): lextypes = {} # mapping of lexical entry IDs to types for lexicon in glob.iglob(lexicons+'**'): for event, obj, lineno in tdl.iterparse(lexicon): if event == 'TypeDefinition': lextypes[obj.identifier] = obj.supertypes[0] # assume exactly 1 self.lextypes = lextypes def read_testsuites(self,path): max_sen_length = 0 corpus_size = 0 data = {'train':{'by corpus':[], 'by length': {}}, 'test':{'by corpus':[], 'by length': {}}, 'dev':{'by corpus':[], 'by length': {}}} print('Reading test suite files into pydelphin objects...') n = 0 for idx in ['train','dev','test']: t = 0 for i, tsuite in enumerate(sorted(glob.iglob(path + idx + '/**'))): n += 1 ts = itsdb.TestSuite(tsuite) if idx == 'train': message = "A nontrain dataset {} is being added as training data!".format(ts.path.stem) assert ts.path.stem not in NONTRAIN, message data[idx]['by corpus'].append({'name':ts.path.stem}) items = list(ts.processed_items()) data[idx]['by corpus'][i]['sentences'] = {} data[idx]['by corpus'][i]['tokens-tags'] = [] corpus_size += len(items) for response in items: if len(response['results']) > 0: deriv = response.result(0).derivation() terminals = deriv.terminals() t += len(terminals) p_input = response['p-input'] p_tokens = response['p-tokens'] terminals_tok_tags = self.map_lattice_to_input(p_input, p_tokens, deriv) if len(terminals) not in data[idx]['by corpus'][i]['sentences']: data[idx]['by corpus'][i]['sentences'][len(terminals)] = [] data[idx]['by corpus'][i]['sentences'][len(terminals)].append(terminals_tok_tags) data[idx]['by corpus'][i]['tokens-tags'].append(terminals_tok_tags) if len(terminals) > max_sen_length: max_sen_length = len(terminals) print('All raw {} tokens: {}'.format(idx,t)) t1 = 0 t2 = 0 if idx == 'train': all_sentences = {} for ts in data[idx]['by corpus']: t1 += self.org_sen_by_length(all_sentences, ts) for l in all_sentences: for s in all_sentences[l]: t2 += len(s) data[idx]['by length'] = OrderedDict(sorted(all_sentences.items())) else: for ts in data[idx]['by corpus']: all_sentences = {} t1 += self.org_sen_by_length(all_sentences, ts) data[idx]['by length'][ts['name']] = OrderedDict(sorted(all_sentences.items())) for ts in data[idx]['by length']: for l in data[idx]['by length'][ts]: for s in data[idx]['by length'][ts][l]: t2 += len(s) print('Added {} {} tokens to the by-corpus table'.format(t1,idx)) print('Added {} {} tokens to the by-length table'.format(t2,idx)) return max_sen_length, corpus_size, n+1, data def org_sen_by_length(self, all_sentences, ts): n = 0 for l in ts['sentences']: for s in ts['sentences'][l]: n += len(s) if l not in all_sentences: all_sentences[l] = [] all_sentences[l] += ts['sentences'][l] return n def process_testsuites_autoreg(self,testsuites,lextypes, out_dir): max_sen_length, corpus_size, num_ts, data = self.read_testsuites(testsuites) tables_by_len = {'train':{},'dev':{},'test':{}} for k in ['train','dev','test']: pathlib.Path(out_dir + '/labeled-data/' + k).mkdir(parents=True, exist_ok=False) all_tokens = 0 test = k in ['dev','test'] if test: for corpus in data[k]['by length']: all_tokens += self.process_table(data, k, lextypes, tables_by_len, test, corpus) else: all_tokens += self.process_table(data, k, lextypes, tables_by_len, test) print('Total PROCESSED {} tokens: {}'.format(k, all_tokens)) def process_testsuites_nonautoreg(self,testsuites,lextypes, out_dir): pos_mapper = pos_map.Pos_mapper('./pos-map.txt') max_sen_length, corpus_size, num_ts, data = self.read_testsuites(testsuites) for k in ['train','dev','test']: is_devtest_data = k in ['dev','test'] pathlib.Path(out_dir + '/labeled-data/' + k).mkdir(parents=True, exist_ok=False) if is_devtest_data: for corpus in data[k]['by corpus']: x,y = self.process_corpus(lextypes,corpus,pos_mapper) data_table['ft'] = x data_table['lt'] = y with open(out_dir + '/labeled-data/' + k + '/' + corpus['name'], 'wb') as f: pickle.dump(data_table, f) else: data_table = {'ft':[],'lt':[]} for corpus in data[k]['by corpus']: x, y = self.process_corpus(lextypes,corpus,pos_mapper) data_table['ft'] += x data_table['lt'] += y with open(out_dir + '/labeled-data/train/train' , 'wb') as f: pickle.dump(data_table, f) def process_corpus(self, lextypes, corpus,pos_mapper): data = [] y = [] for sen in corpus['tokens-tags']: tokens, labels, pos_tags, autoregress_labels = \ self.get_tokens_labels(sen, CONTEXT_WINDOW, lextypes, pos_mapper, False) for k, t in enumerate(tokens): if k < CONTEXT_WINDOW or k >= len(tokens) - CONTEXT_WINDOW: continue y.append(labels[k]) data.append(self.get_context(t, tokens, pos_tags, k, CONTEXT_WINDOW)) return data, y def process_table(self, data, k, lextypes, tables_by_len, test, corpus=None): n = 0 table = data[k]['by length'] if not test else data[k]['by length'][corpus] for sen_len in table: tables_by_len[k][sen_len] = {} autoregress_table = np.array([[{}] * len(table[sen_len]) for i in range(sen_len)]) labels_table = np.array([[{}] * len(table[sen_len]) for i in range(sen_len)]) # print("Processing sentences of length {}".format(sen_len)) n += self.process_length(lextypes, table[sen_len], autoregress_table, labels_table, test=test) tables_by_len[k][sen_len]['ft'] = autoregress_table tables_by_len[k][sen_len]['lt'] = labels_table if test: with open(out_dir + '/labeled-data/' + k + '/' + corpus, 'wb') as f: pickle.dump(tables_by_len[k], f) else: with open(out_dir + '/labeled-data/train/train' , 'wb') as f: pickle.dump(tables_by_len[k], f) return n ''' Assume a numpy table coming in. Get e.g. tokens 2 through 5 in sentences 4 and 5, for the test suite #20 in the data. ''' def get_table_portion(self, ts_info, table, ts_num, token_range, sentence_range): ts_column = ts_info[ts_num]['column'] tokens = sum(ts_info[ts_num]['sentences'][sentence_range[0]:sentence_range[1]]) return table[token_range[0]:token_range[1],ts_column:ts_column+tokens] def process_testsuite(self, lextypes, logf, tsuite, autoregress_table, labels_table, start): print("Processing " + tsuite['name']) logf.write("Processing " + tsuite['name'] + '\n') pairs = [] contexts = [] y = [] ys = [] pos_mapper = pos_map.Pos_mapper('./pos-map.txt') # do this for every test suite to count unknowns in each for sentence_len in tsuite['sentences']: items = tsuite['sentences'][sentence_len] for j, lst_of_terminals in enumerate(items): contexts.append([]) #if j % 100 == 0: # print("Processing item {} out of {}...".format(j, len(items))) tokens,labels,pos_tags,autoregress_labels = \ self.get_tokens_labels(tsuite['tokens-tags'][j],CONTEXT_WINDOW, lextypes,pos_mapper,test=False) ys.append(labels[CONTEXT_WINDOW:CONTEXT_WINDOW*-1]) for k, t in enumerate(tokens): if k < CONTEXT_WINDOW or k >= len(tokens) - CONTEXT_WINDOW: continue pairs.append((t, labels[k])) y.append(labels[k]) contexts[j].append(self.get_context(t, tokens, pos_tags, k, CONTEXT_WINDOW)) autoregress_table[k-CONTEXT_WINDOW][start+j] = \ self.get_autoregress_context(tokens,pos_tags,autoregress_labels, k,CONTEXT_WINDOW) labels_table[k-CONTEXT_WINDOW][start+j] = labels[k] pairs.append(('--EOS--','--EOS--')) # sentence separator y.append('\n') # sentence separator self.write_output(contexts, pairs, tsuite['name']) return ys def process_length(self, lextypes, items, autoregress_table, labels_table,test): y = [] ys = [] all_tokens = 0 pos_mapper = pos_map.Pos_mapper('./pos-map.txt') # do this for every test suite to count unknowns in each for j, lst_of_terminals in enumerate(items): #if j % 100 == 0: # print("Processing item {} out of {}...".format(j, len(items))) tokens,labels,pos_tags,autoregress_labels = \ self.get_tokens_labels(lst_of_terminals,CONTEXT_WINDOW, lextypes,pos_mapper,test) ys.append(labels[CONTEXT_WINDOW:CONTEXT_WINDOW*-1]) for k, t in enumerate(tokens): if k < CONTEXT_WINDOW or k >= len(tokens) - CONTEXT_WINDOW: continue y.append(labels[k]) autoregress_table[k-CONTEXT_WINDOW][j] = \ self.get_autoregress_context(tokens,pos_tags,autoregress_labels, k,CONTEXT_WINDOW) labels_table[k-CONTEXT_WINDOW][j] = labels[k] all_tokens += 1 y.append('\n') # sentence separator return all_tokens def map_lattice_to_input(self, p_input, p_tokens, deriv): yy_lattice = YYTokenLattice.from_string(p_tokens) yy_input = YYTokenLattice.from_string(p_input) terminals_toks_postags = [] for t in deriv.terminals(): toks_pos_tags = [] for ttok in t.tokens: span = None pos_probs = {} for lat_tok in yy_lattice.tokens: if lat_tok.id == ttok.id: span = lat_tok.lnk.data break for i,in_tok in enumerate(yy_input.tokens): if in_tok.lnk.data[0] == span[0]: for pos, p in in_tok.pos: if pos not in pos_probs: pos_probs[pos] = [] pos_probs[pos].append(float(p)) if in_tok.lnk.data[1] != span[1]: cur_tok = in_tok while cur_tok.lnk.data[1] != span[1]: next_tok = yy_input.tokens[i+1] i += 1 for pos, p in next_tok.pos: if pos not in pos_probs: pos_probs[pos] = [] pos_probs[pos].append(float(p)) cur_tok = next_tok else: break toks_pos_tags.append((ttok, pos_probs)) terminals_toks_postags.append((t,toks_pos_tags)) return terminals_toks_postags def write_output(self, contexts, pairs, ts_name): for d in ['train/','test/','dev/', 'ignore/']: for pd in ['simple/','by-corpus/contexts/','by-corpus/true_labels/']: pathlib.Path('./output/' + pd + d).mkdir(parents=True, exist_ok=True) true_labels = [] suf = 'train/' if ts_name in IGNORE: suf = 'ignore/' if ts_name in TEST: suf = 'test/' elif ts_name in DEV: suf = 'dev/' with open('./output/simple/' + suf + ts_name, 'w') as f: for form, letype in pairs: if not letype=='--EOS--': true_labels.append(str(letype)) str_pair = f'{form}\t{letype}' f.write(str_pair + '\n') else: f.write('\n') # sentence separator true_labels.append('\n') # sentence separator with open('./output/by-corpus/true_labels/' + suf + ts_name, 'w') as f: for tl in true_labels: f.write(tl) if tl != '\n': f.write('\n') with open('./output/by-corpus/contexts/' + suf + ts_name, 'w') as f: f.write(json.dumps(contexts)) def get_context(self, t, tokens, pos_tags, i, window): context = {'w': t, 'pos': pos_tags[i]} for j in range(1,window+1): prev_tok = tokens[i-j] prev_pos = pos_tags[i-j] next_tok = tokens[i+j] next_pos = pos_tags[i+j] context['w-' + str(j)] = prev_tok context['w+' + str(j)] = next_tok context['pos-' + str(j)] = prev_pos context['pos+' + str(j)] = next_pos return context def get_autoregress_context(self,tokens,pos_tags,predicted_labels, k,window): context = {'w':tokens[k],'pos':pos_tags[k]} for i in range(1,window+1): context['w-' + str(i)] = tokens[k-i] context['w+' + str(i)] = tokens[k+i] context['pos-' + str(i)] = pos_tags[k-i] context['pos+' + str(i)] = pos_tags[k+i] context['tag-' + str(i)] = predicted_labels[k-i] # Will be None or FAKE in test mode return context def get_tokens_labels(self, terms_and_tokens_tags, context_window, lextypes,pos_mapper, test): tokens = [] labels = [] pos_tags = [] previous_tags = [] for i,(terminal, toks_tags) in enumerate(terms_and_tokens_tags): letype = str(lextypes.get(terminal.parent.entity, "<UNK>")) tokens.append(terminal.form) labels.append(letype) pos_tags.append(self.get_pos_tag(toks_tags, pos_mapper)) if test: previous_tags.append(None) else: previous_tags.append(letype) for i in range(1,1+context_window): tokens.insert(0, 'FAKE-' + str(i)) labels.insert(0, 'FAKE-' + str(i)) pos_tags.insert(0,'FAKE-' + str(i)) previous_tags.insert(0, 'FAKE-' + str(i)) tokens.append('FAKE+' + str(i)) labels.append('FAKE+' + str(i)) pos_tags.append('FAKE+' + str(i)) return tokens, labels, pos_tags, previous_tags def get_pos_tag(self,tokens_tags, pos_mapper): tag = '' for tt in tokens_tags: pos_probs = tt[1] for pos in pos_probs: tag = tag + '+' + pos tag = tag.strip('+') if '+' in tag: tag = pos_mapper.map_tag(tag) return tag if __name__ == "__main__": args = sys.argv[1:] dt_str = '-'.join(str(datetime.now()).split()).replace(':','.') run_id = sys.argv[3] + dt_str if len(sys.argv) > 3: autoreg = sys.argv[4] == 'autoreg' out_dir = './output/' + run_id pathlib.Path(out_dir).mkdir(parents=True, exist_ok=False) le = LexTypeExtractor() le.parse_lexicons(args[0]) le.stats['total lextypes'] = len(le.lextypes) if autoreg: le.process_testsuites_autoreg(args[1],le.lextypes,out_dir) else: le.process_testsuites_nonautoreg(args[1],le.lextypes,out_dir) with open(out_dir + '/lextypes','wb') as f: lextypes = set([str(v) for v in list(le.lextypes.values())]) pickle.dump(lextypes,f)
15,668
0
457
e415bab977b01817df0d4c4b2e45aacf11aa8fbf
2,294
py
Python
homeassistant/components/environment_canada/camera.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/environment_canada/camera.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
homeassistant/components/environment_canada/camera.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Support for the Environment Canada radar imagery.""" from __future__ import annotations import voluptuous as vol from homeassistant.components.camera import Camera from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.entity_platform import ( AddEntitiesCallback, async_get_current_platform, ) from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import ATTR_OBSERVATION_TIME, DOMAIN SERVICE_SET_RADAR_TYPE = "set_radar_type" SET_RADAR_TYPE_SCHEMA = { vol.Required("radar_type"): vol.In(["Auto", "Rain", "Snow"]), } async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Add a weather entity from a config_entry.""" coordinator = hass.data[DOMAIN][config_entry.entry_id]["radar_coordinator"] async_add_entities([ECCamera(coordinator)]) platform = async_get_current_platform() platform.async_register_entity_service( SERVICE_SET_RADAR_TYPE, SET_RADAR_TYPE_SCHEMA, "async_set_radar_type", ) class ECCamera(CoordinatorEntity, Camera): """Implementation of an Environment Canada radar camera.""" def __init__(self, coordinator): """Initialize the camera.""" super().__init__(coordinator) Camera.__init__(self) self.radar_object = coordinator.ec_data self._attr_name = f"{coordinator.config_entry.title} Radar" self._attr_unique_id = f"{coordinator.config_entry.unique_id}-radar" self._attr_attribution = self.radar_object.metadata["attribution"] self._attr_entity_registry_enabled_default = False self.content_type = "image/gif" def camera_image( self, width: int | None = None, height: int | None = None ) -> bytes | None: """Return bytes of camera image.""" self._attr_extra_state_attributes = { ATTR_OBSERVATION_TIME: self.radar_object.timestamp, } return self.radar_object.image async def async_set_radar_type(self, radar_type: str): """Set the type of radar to retrieve.""" self.radar_object.precip_type = radar_type.lower() await self.radar_object.update()
33.246377
79
0.722319
"""Support for the Environment Canada radar imagery.""" from __future__ import annotations import voluptuous as vol from homeassistant.components.camera import Camera from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.entity_platform import ( AddEntitiesCallback, async_get_current_platform, ) from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import ATTR_OBSERVATION_TIME, DOMAIN SERVICE_SET_RADAR_TYPE = "set_radar_type" SET_RADAR_TYPE_SCHEMA = { vol.Required("radar_type"): vol.In(["Auto", "Rain", "Snow"]), } async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Add a weather entity from a config_entry.""" coordinator = hass.data[DOMAIN][config_entry.entry_id]["radar_coordinator"] async_add_entities([ECCamera(coordinator)]) platform = async_get_current_platform() platform.async_register_entity_service( SERVICE_SET_RADAR_TYPE, SET_RADAR_TYPE_SCHEMA, "async_set_radar_type", ) class ECCamera(CoordinatorEntity, Camera): """Implementation of an Environment Canada radar camera.""" def __init__(self, coordinator): """Initialize the camera.""" super().__init__(coordinator) Camera.__init__(self) self.radar_object = coordinator.ec_data self._attr_name = f"{coordinator.config_entry.title} Radar" self._attr_unique_id = f"{coordinator.config_entry.unique_id}-radar" self._attr_attribution = self.radar_object.metadata["attribution"] self._attr_entity_registry_enabled_default = False self.content_type = "image/gif" def camera_image( self, width: int | None = None, height: int | None = None ) -> bytes | None: """Return bytes of camera image.""" self._attr_extra_state_attributes = { ATTR_OBSERVATION_TIME: self.radar_object.timestamp, } return self.radar_object.image async def async_set_radar_type(self, radar_type: str): """Set the type of radar to retrieve.""" self.radar_object.precip_type = radar_type.lower() await self.radar_object.update()
0
0
0
dfd8028393ae8ae7d4bfcfe8f9c74276b8f956f7
308
py
Python
v1/chapter6/4-readingCsvDict.py
QTYResources/python-scraping
d7afe25a012fb5d079ee42372c7fce94b9494b9f
[ "MIT" ]
null
null
null
v1/chapter6/4-readingCsvDict.py
QTYResources/python-scraping
d7afe25a012fb5d079ee42372c7fce94b9494b9f
[ "MIT" ]
null
null
null
v1/chapter6/4-readingCsvDict.py
QTYResources/python-scraping
d7afe25a012fb5d079ee42372c7fce94b9494b9f
[ "MIT" ]
null
null
null
from urllib.request import urlopen from io import StringIO import csv data = urlopen("http://pythonscraping.com/files/MontyPythonAlbums.csv").read().decode('ascii', 'ignore') dataFile = StringIO(data) dictReader = csv.DictReader(dataFile) print(dictReader.fieldnames) for row in dictReader: print(row)
25.666667
104
0.775974
from urllib.request import urlopen from io import StringIO import csv data = urlopen("http://pythonscraping.com/files/MontyPythonAlbums.csv").read().decode('ascii', 'ignore') dataFile = StringIO(data) dictReader = csv.DictReader(dataFile) print(dictReader.fieldnames) for row in dictReader: print(row)
0
0
0
02ae809d3645a6053bab6f39633b7e2d90bf2e2e
741
py
Python
hash-array-string/1.8-zero-matrix/main.py
digoreis/code-interview
e2250c39b0fc9b6a8f0bc151b4f796d17cdce3e3
[ "MIT" ]
null
null
null
hash-array-string/1.8-zero-matrix/main.py
digoreis/code-interview
e2250c39b0fc9b6a8f0bc151b4f796d17cdce3e3
[ "MIT" ]
null
null
null
hash-array-string/1.8-zero-matrix/main.py
digoreis/code-interview
e2250c39b0fc9b6a8f0bc151b4f796d17cdce3e3
[ "MIT" ]
null
null
null
# Write an algorithm such that if an element in MxN matrix is 0, it's entire row and column are set to 0. matrix = [[1,1,1,1],[1,1,1,1],[1,1,0,1],[1,1,1,1],[1,1,1,0]] matrixZero(matrix) print('\n'.join(['\t'.join([str(cell) for cell in row]) for row in matrix]))
26.464286
105
0.562753
# Write an algorithm such that if an element in MxN matrix is 0, it's entire row and column are set to 0. def rowZero(matrix, row): for i in range(len(matrix[row])): matrix[row][i] = 0 def columnZero(matrix, column): for i in range(len(matrix)): matrix[i][column] = 0 def matrixZero(matrix): points = [] for i in range(len(matrix)): for j in range(len(matrix[0])): if matrix[i][j] == 0: points.append((i,j)) for p in points: rowZero(matrix, p[0]) columnZero(matrix, p[1]) matrix = [[1,1,1,1],[1,1,1,1],[1,1,0,1],[1,1,1,1],[1,1,1,0]] matrixZero(matrix) print('\n'.join(['\t'.join([str(cell) for cell in row]) for row in matrix]))
393
0
68
d805c677ed9537d580479c240741257bc4c84e5c
4,725
py
Python
src/Class/shadowedrice.py
Jonathan-Browning/Shadowed-Rician-Fading-Python
c1faa061c4d2a253bd1fe7098edc0e21740cb3ea
[ "MIT" ]
2
2021-02-23T15:49:47.000Z
2021-04-24T01:32:42.000Z
src/Class/shadowedrice.py
Jonathan-Browning/Shadowed-Rician-Fading-Python
c1faa061c4d2a253bd1fe7098edc0e21740cb3ea
[ "MIT" ]
null
null
null
src/Class/shadowedrice.py
Jonathan-Browning/Shadowed-Rician-Fading-Python
c1faa061c4d2a253bd1fe7098edc0e21740cb3ea
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Nov 4 18:55:46 2020 @author: Jonathan Browning """ import numpy as np from scipy.stats import gaussian_kde as kdf from scipy import special as sp
36.346154
151
0.572275
# -*- coding: utf-8 -*- """ Created on Wed Nov 4 18:55:46 2020 @author: Jonathan Browning """ import numpy as np from scipy.stats import gaussian_kde as kdf from scipy import special as sp class ShadowedRice: numSamples = 2*(10**6) # the number of samples used in the simulation r = np.linspace(0, 6, 6000) # theoretical envelope PDF x axes theta = np.linspace(-np.pi, np.pi, 6000) # theoretical phase PDF x axes def __init__(self, K, m, r_hat, phi): # user input checks and assigns value self.K = self.input_Check(K, "K", 0.001, 50) self.m = self.input_Check(m, "m", 0.001, 50) self.r_hat = self.input_Check(r_hat, "\hat{r}", 0.5, 2.5) self.phi = self.input_Check(phi, "\phi", -np.pi, np.pi) # simulating and theri densities self.multipathFading = self.complex_Multipath_Fading() self.xdataEnv, self.ydataEnv = self.envelope_Density() self.xdataPh, self.ydataPh = self.phase_Density() # theoretical PDFs calculated self.envelopeProbability = self.envelope_PDF() self.phaseProbability = self.phase_PDF() def input_Check(self, data, inputName, lower, upper): # input_Check checks the user inputs # has a value been entered if data == "": raise ValueError(" ".join((inputName, "must have a numeric value"))) # incase of an non-numeric input try: data = float(data) except: raise ValueError(" ".join((inputName, "must have a numeric value"))) # data must be within the range if data < lower or data > upper: raise ValueError(" ".join((inputName, f"must be in the range [{lower:.2f}, {upper:.2f}]"))) return data def calculate_Means(self): # calculate_means calculates the means of the complex Gaussians representing the # in-phase and quadrature components p = np.sqrt(self.K / (1+self.K)) * self.r_hat * np.cos(self.phi) q = np.sqrt(self.K / (1+self.K)) * self.r_hat * np.sin(self.phi) return p, q def scattered_Component(self): # scattered_Component calculates the power of the scattered signal component sigma = self.r_hat / np.sqrt( 2 * (1+self.K) ) return sigma def generate_Gaussians(self, mean, sigma): # generate_Gaussians generates the Gaussian random variables gaussians = np.random.default_rng().normal(mean, sigma, self.numSamples) return gaussians def complex_Multipath_Fading(self): # complex_Multipath_Fading generates the complex fading random variables p, q = self.calculate_Means() sigma = self.scattered_Component() xi = np.sqrt(np.random.gamma(self.m, 1/self.m, self.numSamples)) multipathFading = self.generate_Gaussians(xi*p, sigma) + (1j*self.generate_Gaussians(xi*q, sigma)) return multipathFading def envelope_PDF(self): # envelope_PDF calculates the theoretical envelope PDF PDF = 2 * (1+self.K) * self.r *(self.m**(self.m)) / (self.r_hat**(2)*(self.m+self.K)**(self.m)) \ * np.exp(- ((1+self.K) * self.r**(2)) / self.r_hat**(2)) \ * sp.hyp1f1(self.m, 1, self.r**(2)*self.K*(self.K+1)/(self.r_hat**(2)*(self.K+self.m))) return PDF def phase_PDF(self): # phase_PDF calculates the theoretical phase PDF PDF = (self.m**self.m * np.sqrt(self.K)/(2 * np.sqrt(np.pi) * (self.K + self.m)**(self.m +1/2))) \ * ( np.sqrt((self.K +self.m)/(np.pi*self.K)) * sp.hyp2f1(self.m, 1, 1/2, (self.K*(np.cos(self.theta - self.phi))**(2))/(self.K +self.m)) \ + ((sp.gamma(self.m+1/2) / sp.gamma(self.m))*np.cos(self.theta-self.phi) \ * (1- (self.K*(np.cos(self.theta - self.phi))**(2)) / (self.K +self.m))**(-self.m-1/2))) return PDF def envelope_Density(self): # envelope_Density finds the envelope PDF of the simulated random variables R = np.sqrt((np.real(self.multipathFading))**2 + (np.imag(self.multipathFading))**2) kde = kdf(R) x = np.linspace(R.min(), R.max(), 100) p = kde(x) return x, p def phase_Density(self): # phase_Density finds the phase PDF of the simulated random variables R = np.angle(self.multipathFading) kde = kdf(R) x = np.linspace(R.min(), R.max(), 100) p = kde(x) return x, p
3,978
525
23
c00b03a6c58efa0a53f7586ea8d163bb92f588f1
1,063
py
Python
src/ggrc_workflows/migrations/versions/20170925135632_3ebe14ae9547_set_empty_next_cycle_start_date.py
HLD/ggrc-core
9bdc0fc6ca9e252f4919db682d80e360d5581eb4
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/ggrc_workflows/migrations/versions/20170925135632_3ebe14ae9547_set_empty_next_cycle_start_date.py
HLD/ggrc-core
9bdc0fc6ca9e252f4919db682d80e360d5581eb4
[ "ECL-2.0", "Apache-2.0" ]
10
2018-07-06T00:04:23.000Z
2021-02-26T21:13:20.000Z
src/ggrc_workflows/migrations/versions/20170925135632_3ebe14ae9547_set_empty_next_cycle_start_date.py
HLD/ggrc-core
9bdc0fc6ca9e252f4919db682d80e360d5581eb4
[ "ECL-2.0", "Apache-2.0" ]
1
2017-11-11T22:16:56.000Z
2017-11-11T22:16:56.000Z
# Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """ Set empty next_cycle_start_date Create Date: 2017-09-25 13:56:32.087965 """ # disable Invalid constant name pylint warning for mandatory Alembic variables. # pylint: disable=invalid-name from alembic import op # revision identifiers, used by Alembic. revision = '3ebe14ae9547' down_revision = '4991c5731711' def upgrade(): """Upgrade database schema and/or data, creating a new revision.""" op.execute("UPDATE workflows, ( " "SELECT w.id " "FROM workflows AS w " "LEFT JOIN task_groups AS tg ON tg.workflow_id = w.id " "LEFT JOIN task_group_tasks AS t ON t.task_group_id = tg.id " "WHERE t.id IS NULL AND w.next_cycle_start_date IS NOT NULL " ") AS t " "SET workflows.next_cycle_start_date = NULL " "WHERE workflows.id = t.id;") def downgrade(): """Downgrade database schema and/or data back to the previous revision.""" pass
29.527778
79
0.664158
# Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """ Set empty next_cycle_start_date Create Date: 2017-09-25 13:56:32.087965 """ # disable Invalid constant name pylint warning for mandatory Alembic variables. # pylint: disable=invalid-name from alembic import op # revision identifiers, used by Alembic. revision = '3ebe14ae9547' down_revision = '4991c5731711' def upgrade(): """Upgrade database schema and/or data, creating a new revision.""" op.execute("UPDATE workflows, ( " "SELECT w.id " "FROM workflows AS w " "LEFT JOIN task_groups AS tg ON tg.workflow_id = w.id " "LEFT JOIN task_group_tasks AS t ON t.task_group_id = tg.id " "WHERE t.id IS NULL AND w.next_cycle_start_date IS NOT NULL " ") AS t " "SET workflows.next_cycle_start_date = NULL " "WHERE workflows.id = t.id;") def downgrade(): """Downgrade database schema and/or data back to the previous revision.""" pass
0
0
0
a9dd6bbf97a596cde44dca1d194056908053fcb0
29,435
py
Python
test/test_madx.py
odidev/cpymad
7b58d013a669d0973c233743e05fa205257233dd
[ "ECL-2.0", "Apache-2.0" ]
22
2015-05-27T13:45:55.000Z
2022-03-03T15:43:47.000Z
test/test_madx.py
odidev/cpymad
7b58d013a669d0973c233743e05fa205257233dd
[ "ECL-2.0", "Apache-2.0" ]
102
2015-01-23T18:21:29.000Z
2022-02-28T17:07:26.000Z
test/test_madx.py
odidev/cpymad
7b58d013a669d0973c233743e05fa205257233dd
[ "ECL-2.0", "Apache-2.0" ]
18
2015-01-24T12:43:57.000Z
2021-11-23T08:29:57.000Z
""" Tests for the :class:`cpymad.madx.Madx` API. """ import os import sys import numpy as np from numpy.testing import assert_allclose, assert_equal from pytest import approx, fixture, mark, raises import cpymad from cpymad.madx import Madx, Sequence, metadata @fixture @fixture SEQU = """ ! constants QP_K1 = 2; ! elements qp: quadrupole, k1:=QP_K1, l=1; sb: sbend, l=2, angle=3.14/4; dr: drift, l=1; ! sequences s1: sequence, l=8, refer=center; dr, at=0.5; ! dr[1] ~ betx_full1[1] qp, at=1.5; dr, at=2.5; ! dr[2] ~ betx_full1[3] ~ betx_range[0] qp, at=3.5; ! ~ betx_full1[4] ~ betx_range[1] dr, at=4.5; sb, at=6.0; ! ~ betx_range[3] dr, at=7.5; endsequence; s2: sequence, l=3, refer=entry; qp1: qp, at=0, k1=3; qp2: qp, at=1, l=2; endsequence; """ def normalize(path): """Normalize path name to eliminate different spellings of the same path. This is needed for path comparisons in tests, especially on windows where pathes are case insensitive and allow a multitude of spellings.""" return os.path.normcase(os.path.normpath(path)) def test_version(mad): """Check that the Madx.version attribute can be used as expected.""" version = mad.version # check format: major, minor, micro = map(int, version.release.split('.')) # We need at least MAD-X 5.05.00: assert (major, minor, micro) >= (5, 5, 0) # check format: year, month, day = map(int, version.date.split('.')) assert (year, month, day) >= (2019, 5, 10) assert 1 <= month <= 12 assert 1 <= day <= 31 assert str(version).startswith( 'MAD-X {}'.format(version.release)) # TODO: We need to fix this on windows, but for now, I just need it to # pass so that the CI builds the release... @mark.xfail( sys.platform != 'linux', reason='Output is sometimes garbled on MacOS and windows.', ) @mark.xfail( sys.platform != 'linux', reason='Output is sometimes garbled on MacOS and windows.', ) def test_command_log(): """Check that the command log contains all input commands.""" # create a new Madx instance that uses the history feature: history_filename = '_test_madx.madx.tmp' try: # feed some input lines and compare with history file: lines = """ l = 5; f = 200; fodo: sequence, refer=entry, l=100; QF: quadrupole, l=5, at= 0, k1= 1/(f*l); QD: quadrupole, l=5, at=50, k1=-1/(f*l); endsequence; beam, particle=proton, energy=2; use, sequence=fodo; """.splitlines() lines = [line.strip() for line in lines if line.strip()] with Madx(command_log=history_filename) as mad: for line in lines: mad.input(line) with open(history_filename) as history_file: history = history_file.read() assert history.strip() == '\n'.join(lines).strip() finally: # remove history file os.remove(history_filename) def test_append_semicolon(): """Check that semicolon is automatically appended to input() text.""" # Regression test for #73 log = [] with Madx(command_log=log.append) as mad: mad.input('a = 0') mad.input('b = 1') assert log == ['a = 0;', 'b = 1;'] assert mad.globals.a == 0 assert mad.globals.b == 1 # def test_sequence_get_expanded_elements(): def test_crash(mad): """Check that a RuntimeError is raised in case MAD-X crashes.""" assert bool(mad) # a.t.m. MAD-X crashes on this input, because the L (length) # parametere is missing: raises(RuntimeError, mad.input, 'XXX: sequence;') assert not bool(mad)
29.114738
77
0.592526
""" Tests for the :class:`cpymad.madx.Madx` API. """ import os import sys import numpy as np from numpy.testing import assert_allclose, assert_equal from pytest import approx, fixture, mark, raises import cpymad from cpymad.madx import Madx, Sequence, metadata @fixture def mad(): with Madx(prompt='X:> ') as mad: yield mad @fixture def lib(mad): return mad._libmadx SEQU = """ ! constants QP_K1 = 2; ! elements qp: quadrupole, k1:=QP_K1, l=1; sb: sbend, l=2, angle=3.14/4; dr: drift, l=1; ! sequences s1: sequence, l=8, refer=center; dr, at=0.5; ! dr[1] ~ betx_full1[1] qp, at=1.5; dr, at=2.5; ! dr[2] ~ betx_full1[3] ~ betx_range[0] qp, at=3.5; ! ~ betx_full1[4] ~ betx_range[1] dr, at=4.5; sb, at=6.0; ! ~ betx_range[3] dr, at=7.5; endsequence; s2: sequence, l=3, refer=entry; qp1: qp, at=0, k1=3; qp2: qp, at=1, l=2; endsequence; """ def normalize(path): """Normalize path name to eliminate different spellings of the same path. This is needed for path comparisons in tests, especially on windows where pathes are case insensitive and allow a multitude of spellings.""" return os.path.normcase(os.path.normpath(path)) def test_copyright(): notice = cpymad.get_copyright_notice() assert isinstance(notice, type(u"")) def test_version(mad): """Check that the Madx.version attribute can be used as expected.""" version = mad.version # check format: major, minor, micro = map(int, version.release.split('.')) # We need at least MAD-X 5.05.00: assert (major, minor, micro) >= (5, 5, 0) # check format: year, month, day = map(int, version.date.split('.')) assert (year, month, day) >= (2019, 5, 10) assert 1 <= month <= 12 assert 1 <= day <= 31 assert str(version).startswith( 'MAD-X {}'.format(version.release)) def test_metadata(mad): version = mad.version assert metadata.__version__ == version.release assert isinstance(metadata.get_copyright_notice(), type(u"")) def test_independent_instances(): # Check independence by defining a variable differently in each # instance: with Madx(prompt='X1:> ') as mad1, Madx(prompt='X2:> ') as mad2: mad1.input('ANSWER=42;') mad2.input('ANSWER=43;') assert mad1.eval('ANSWER') == 42 assert mad2.eval('ANSWER') == 43 # TODO: We need to fix this on windows, but for now, I just need it to # pass so that the CI builds the release... @mark.xfail( sys.platform != 'linux', reason='Output is sometimes garbled on MacOS and windows.', ) def test_streamreader(): output = [] with Madx(stdout=output.append) as m: assert len(output) == 1 assert b'+++++++++++++++++++++++++++++++++' in output[0] assert b'+ Support: [email protected],' in output[0] assert b'+ Release date: ' in output[0] assert b'+ Execution date: ' in output[0] # assert b'+ Support: [email protected], ', output[1] m.input('foo = 3;') assert len(output) == 1 m.input('foo = 3;') assert len(output) == 2 assert output[1] == b'++++++ info: foo redefined\n' assert len(output) == 3 assert b'+ MAD-X finished normally ' in output[2] def test_quit(mad): mad.quit() assert mad._process.returncode is not None assert not bool(mad) with raises(RuntimeError): mad.input(';') @mark.xfail( sys.platform != 'linux', reason='Output is sometimes garbled on MacOS and windows.', ) def test_context_manager(): output = [] with Madx(stdout=output.append) as m: m.input('foo = 3;') assert m.globals.foo == 3 assert b'+ MAD-X finished normally ' in output[-1] assert not bool(m) with raises(RuntimeError): m.input(';') def test_command_log(): """Check that the command log contains all input commands.""" # create a new Madx instance that uses the history feature: history_filename = '_test_madx.madx.tmp' try: # feed some input lines and compare with history file: lines = """ l = 5; f = 200; fodo: sequence, refer=entry, l=100; QF: quadrupole, l=5, at= 0, k1= 1/(f*l); QD: quadrupole, l=5, at=50, k1=-1/(f*l); endsequence; beam, particle=proton, energy=2; use, sequence=fodo; """.splitlines() lines = [line.strip() for line in lines if line.strip()] with Madx(command_log=history_filename) as mad: for line in lines: mad.input(line) with open(history_filename) as history_file: history = history_file.read() assert history.strip() == '\n'.join(lines).strip() finally: # remove history file os.remove(history_filename) def test_append_semicolon(): """Check that semicolon is automatically appended to input() text.""" # Regression test for #73 log = [] with Madx(command_log=log.append) as mad: mad.input('a = 0') mad.input('b = 1') assert log == ['a = 0;', 'b = 1;'] assert mad.globals.a == 0 assert mad.globals.b == 1 def test_call_and_chdir(mad): folder = os.path.abspath(os.path.dirname(__file__)) parent = os.path.dirname(folder) getcwd = mad._libmadx.getcwd g = mad.globals mad.chdir(folder) assert normalize(getcwd()) == normalize(folder) mad.call('answer_42.madx') assert g.answer == 42 with mad.chdir('..'): assert normalize(getcwd()) == normalize(parent) mad.call('test/answer_43.madx') assert g.answer == 43 mad.call('test/answer_call42.madx', True) assert g.answer == 42 assert normalize(getcwd()) == normalize(folder) mad.call('answer_43.madx') assert g.answer == 43 mad.chdir('..') assert normalize(getcwd()) == normalize(parent) def _check_twiss(mad, seq_name): beam = 'ex=1, ey=2, particle=electron, sequence={0};'.format(seq_name) mad.command.beam(beam) mad.use(seq_name) initial = dict(alfx=0.5, alfy=1.5, betx=2.5, bety=3.5) twiss = mad.twiss(sequence=seq_name, **initial) # Check initial values: assert twiss['alfx'][0] == approx(initial['alfx']) assert twiss['alfy'][0] == approx(initial['alfy']) assert twiss['betx'][0] == approx(initial['betx']) assert twiss['bety'][0] == approx(initial['bety']) assert twiss.summary['ex'] == approx(1) assert twiss.summary['ey'] == approx(2) # Check that keys are all lowercase: for k in twiss: assert k == k.lower() for k in twiss.summary: assert k == k.lower() def test_error(mad): mad.input(""" seq: sequence, l=1; endsequence; beam; use, sequence=seq; """) # Errors in MAD-X must not crash, but return False instead: assert not mad.input('twiss;') assert mad.input('twiss, betx=1, bety=1;') def test_twiss_1(mad): mad.input(SEQU) _check_twiss(mad, 's1') # s1 can be computed at start _check_twiss(mad, 's1') # s1 can be computed multiple times _check_twiss(mad, 's2') # s2 can be computed after s1 def test_twiss_2(mad): mad.input(SEQU) _check_twiss(mad, 's2') # s2 can be computed at start _check_twiss(mad, 's1') # s1 can be computed after s2 def test_twiss_with_range(mad): beam = 'ex=1, ey=2, particle=electron, sequence=s1;' mad.input(SEQU) mad.command.beam(beam) mad.use('s1') params = dict(alfx=0.5, alfy=1.5, betx=2.5, bety=3.5, sequence='s1') # Compute TWISS on full sequence, then on a sub-range, then again on # the full sequence. This checks that none of the range selections # have side-effects on each other: betx_full1 = mad.twiss(**params)['betx'] betx_range = mad.twiss(range=('dr[2]', 'sb'), **params)['betx'] betx_full2 = mad.twiss(**params)['betx'] # Check that the results have the expected lengths: assert len(betx_full1) == 9 assert len(betx_range) == 4 assert len(betx_full2) == 9 # Check numeric results. Since the first 3 elements of range and full # sequence are identical, equal results are expected. And non-equal # results afterwards. assert betx_range[0] == approx(betx_full1[1]) # dr:2, dr:1 assert betx_range[1] == approx(betx_full1[2]) # qp:2, qp:1 assert betx_range[2] == approx(betx_full1[3]) # dr:3, dr:2 assert betx_range[3] != approx(betx_full1[4]) # sb, qp:2 def test_range_row_api(mad): beam = 'ex=1, ey=2, particle=electron, sequence=s1;' mad.input(SEQU) mad.command.beam(beam) mad.use('s1') params = dict(alfx=0.5, alfy=1.5, betx=2.5, bety=3.5, sequence='s1') tab = mad.twiss(range=('dr[2]', 'sb'), **params) assert tab.range == ('dr[2]', 'sb') assert 'betx' in tab def test_survey(mad): mad.input(SEQU) mad.beam() mad.use('s1') tab = mad.survey() assert tab._name == 'survey' assert 'x' in tab assert 'y' in tab assert 'z' in tab assert 'theta' in tab assert 'phi' in tab assert 'psi' in tab assert tab.x[-1] < -1 assert tab.y == approx(0) assert tab.z[-1] > 7 def test_match(mad): beam = 'ex=1, ey=2, particle=electron, sequence=s2;' mad.input(SEQU) mad.command.beam(beam) mad.use('s2') params = dict(alfx=0.5, alfy=1.5, betx=2.5, bety=3.5, sequence='s2') mad.match(constraints=[dict(range='s1$end', betx=2.0)], weight={'betx': 2}, vary=['qp2->k1'], **params) twiss = mad.twiss(**params) val = twiss.betx[-1] assert val == approx(2.0, rel=1e-2) def test_verbose(mad): mad.verbose(False) assert mad.options.echo is False assert mad.options.info is False mad.verbose(True) assert mad.options.echo is True assert mad.options.info is True def test_active_sequence(mad): mad.input(SEQU) mad.command.beam('ex=1, ey=2, particle=electron, sequence=s1;') mad.use('s1') assert mad.sequence() == 's1' mad.beam() mad.use('s2') assert mad.sequence().name == 's2' def test_get_sequence(mad): mad.input(SEQU) with raises(KeyError): mad.sequence['sN'] s1 = mad.sequence['s1'] assert s1.name == 's1' seqs = mad.sequence assert set(seqs) == {'s1', 's2'} def test_eval(mad): mad.input(SEQU) assert mad.eval(True) is True assert mad.eval(13) == 13 assert mad.eval(1.3) == 1.3 assert mad.eval([2, True, 'QP_K1']) == [2, True, 2.0] assert mad.eval("1/QP_K1") == approx(0.5) def test_eval_functions(mad): assert mad.eval("sin(1.0)") == approx(np.sin(1.0)) assert mad.eval("cos(1.0)") == approx(np.cos(1.0)) mad.input(""" mqf.k1 = 0.3037241107; mqd.k1 = -0.3037241107; fodo: sequence, l=10, refer=entry; mqf: quadrupole, at=0, l=1, k1:=mqf.k1; dff: drift, at=1, l=4; mqd: quadrupole, at=5, l=1, k1:=mqd.k1; dfd: drift, at=6, l=4; endsequence; beam; use, sequence=fodo; twiss, sequence=fodo, x=0.1; """) elems = mad.sequence.fodo.expanded_elements twiss = mad.table.twiss mad.input("mqf_x = table(twiss, mqf, x);") assert mad.eval("table(twiss, mqf, x)") \ == twiss.row(elems.index('mqf')).x \ == mad.globals.mqf_x def test_globals(mad): g = mad.globals # Membership: assert 'FOO' not in g # Setting values: g['FOO'] = 2 assert 'FOO' in g assert g['FOO'] == 2 assert mad.eval('FOO') == 2 # Re-setting values: g['FOO'] = 3 assert mad.eval('FOO') == 3 # Setting expressions: g['BAR'] = '3*foo' assert mad.eval('BAR') == 9 g['FOO'] = 4 assert mad.eval('BAR') == 12 assert g.defs.bar == "3*foo" assert g.cmdpar.bar.definition == "3*foo" # attribute access: g.bar = 42 assert g.defs.bar == 42 assert g.cmdpar.bar.definition == 42 assert g.BAR == 42 # repr assert "'bar': 42.0" in str(g) with raises(NotImplementedError): del g['bar'] with raises(NotImplementedError): del g.bar assert g.bar == 42 # still there assert 'bar' in list(g) assert 'foo' in list(g) # assert list(g) == list(g.defs) # assert list(g) == list(g.cmdpar) assert len(g) == len(list(g)) assert len(g.defs) == len(list(g.defs)) assert len(g.cmdpar) == len(list(g.cmdpar)) def test_elements(mad): mad.input(SEQU) assert 'sb' in mad.elements assert 'sb' in list(mad.elements) assert 'foobar' not in mad.elements assert mad.elements['sb']['angle'] == approx(3.14/4) idx = mad.elements.index('qp1') elem = mad.elements[idx] assert elem['k1'] == 3 def test_sequence_map(mad): mad.input(SEQU) seq = mad.sequence assert len(seq) == 2 assert set(seq) == {'s1', 's2'} assert 's1' in seq assert 's3' not in seq assert hasattr(seq, 's1') assert not hasattr(seq, 's3') assert seq.s1.name == 's1' assert seq.s2.name == 's2' with raises(AttributeError): seq.s3 def test_table_map(mad): mad.input(SEQU) mad.beam() mad.use('s2') mad.survey(sequence='s2') tab = mad.table assert 'survey' in list(tab) assert 'survey' in tab assert 'foobar' not in tab assert len(tab) == len(list(tab)) with raises(AttributeError): tab.foobar def test_sequence(mad): mad.input(SEQU) s1 = mad.sequence.s1 assert str(s1) == '<Sequence: s1>' assert s1 == mad.sequence.s1 assert s1 == 's1' assert s1 != mad.sequence.s2 assert s1 != 's2' with raises(RuntimeError): s1.beam with raises(RuntimeError): s1.twiss_table with raises(RuntimeError): s1.twiss_table_name assert not s1.has_beam assert not s1.is_expanded s1.expand() assert s1.has_beam assert s1.is_expanded s1.expand() # idempotent assert s1.has_beam assert s1.is_expanded initial = dict(alfx=0.5, alfy=1.5, betx=2.5, bety=3.5) mad.twiss(sequence='s1', sectormap=True, table='my_twiss', **initial) # Now works: assert s1.beam.particle == 'positron' assert s1.twiss_table_name == 'my_twiss' assert s1.twiss_table.betx[0] == 2.5 assert s1.element_names() == [ 's1$start', 'dr', 'qp', 'dr[2]', 'qp[2]', 'dr[3]', 'sb', 'dr[4]', 's1$end', ] assert s1.expanded_element_names() == s1.element_names() assert len(s1.element_names()) == len(s1.element_positions()) assert s1.element_positions() == [ 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 8.0] assert s1.expanded_element_positions() == [ 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 8.0] assert s1.elements[0].name == 's1$start' assert s1.elements[-1].name == 's1$end' assert s1.elements[-1].index == len(s1.elements)-1 assert s1.elements[3].index == 3 assert s1.elements.index('#s') == 0 assert s1.elements.index('#e') == len(s1.elements)-1 assert s1.elements.index('sb') == 6 assert s1.length == 8.0 def test_sequence_get_elements_s1(mad): mad.input(SEQU) s1 = mad.sequence.s1.elements qp1 = s1['qp[1]'] qp2 = s1['qp[2]'] sb1 = s1['sb[1]'] assert s1.index('qp') < s1.index('qp[2]') assert s1.index('qp[2]') < s1.index('sb') assert qp1['at'] == approx(1.5) assert qp2['at'] == approx(3.5) assert sb1['at'] == approx(6) assert qp1.position == approx(1) assert qp2.position == approx(3) assert sb1.position == approx(5) assert qp1['l'] == approx(1) assert qp2['l'] == approx(1) assert sb1['l'] == approx(2) assert float(qp1['k1']) == approx(2) assert float(qp2['k1']) == approx(2) assert float(sb1['angle']) == approx(3.14/4) assert qp1.cmdpar.k1.expr.lower() == "qp_k1" def test_sequence_get_elements_s2(mad): mad.input(SEQU) s2 = mad.sequence.s2.elements qp1 = s2['qp1[1]'] qp2 = s2['qp2[1]'] assert s2.index('qp1') < s2.index('qp2') assert qp1['at'] == approx(0) assert qp2['at'] == approx(1) assert qp1['l'] == approx(1) assert qp2['l'] == approx(2) assert float(qp1['k1']) == approx(3) assert float(qp2['k1']) == approx(2) # def test_sequence_get_expanded_elements(): def test_crash(mad): """Check that a RuntimeError is raised in case MAD-X crashes.""" assert bool(mad) # a.t.m. MAD-X crashes on this input, because the L (length) # parametere is missing: raises(RuntimeError, mad.input, 'XXX: sequence;') assert not bool(mad) def test_sequence_elements(mad): mad.input(SEQU) elements = mad.sequence['s1'].elements iqp2 = elements.index('qp[2]') qp1 = elements['qp[1]'] qp2 = elements[iqp2] assert qp1['at'] == approx(1.5) assert qp2['at'] == approx(3.5) assert qp1.position == approx(1) assert qp2.position == approx(3) assert iqp2 == elements.at(3.1) def test_sequence_expanded_elements(mad): beam = 'ex=1, ey=2, particle=electron, sequence=s1;' mad.input(SEQU) mad.command.beam(beam) mad.use('s1') elements = mad.sequence['s1'].expanded_elements iqp2 = elements.index('qp[2]') qp1 = elements['qp[1]'] qp2 = elements[iqp2] assert qp1['at'] == approx(1.5) assert qp2['at'] == approx(3.5) assert qp1.position == approx(1) assert qp2.position == approx(3) assert iqp2 == elements.at(3.1) def test_element_inform(mad): beam = 'ex=1, ey=2, particle=electron, sequence=s1;' mad.input(SEQU) mad.command.beam(beam) mad.use('s1') elem = mad.sequence.s1.expanded_elements['qp'] assert { name for name in elem if elem.cmdpar[name].inform } == {'k1', 'l', 'at'} def test_table(mad): beam = 'ex=1, ey=2, particle=electron, sequence=s1;' mad.input(SEQU) mad.command.beam(beam) mad.use('s1') initial = dict(alfx=0.5, alfy=1.5, betx=2.5, bety=3.5) twiss = mad.twiss(sequence='s1', sectormap=True, **initial) sector = mad.table.sectortable assert str(twiss).startswith("<Table 'twiss': ") assert str(sector).startswith("<Table 'sectortable': ") assert 'betx' in twiss assert 't111' in sector assert 't111' not in twiss assert 'betx' not in sector assert len(twiss) == len(list(twiss)) assert set(twiss) == set(twiss[0]) assert twiss.s[5] == twiss[5].s assert twiss.s[-1] == twiss[-1].s copy = twiss.copy() assert copy['betx'] == approx(twiss.betx) assert set(copy) == set(twiss) copy = twiss.copy(['betx']) assert set(copy) == {'betx'} ALL = slice(None) assert sector.tmat(0).shape == (6, 6, 6) assert_allclose(sector.tmat(ALL)[0, 0, 0, :], sector.t111) assert_allclose(sector.tmat(ALL)[1, 5, 3, :], sector.t264) assert_allclose(sector.tmat(ALL)[3, 0, 3, :], sector.t414) assert_allclose(sector.tmat(ALL)[4, 4, 4, :], sector.t555) assert_allclose(sector.rmat(ALL)[0, 0, :], sector.r11) assert_allclose(sector.rmat(ALL)[1, 5, :], sector.r26) assert_allclose(sector.rmat(ALL)[3, 0, :], sector.r41) assert_allclose(sector.rmat(ALL)[4, 4, :], sector.r55) assert_allclose(sector.kvec(ALL)[0, :], sector.k1) assert_allclose(sector.kvec(ALL)[1, :], sector.k2) assert_allclose(sector.kvec(ALL)[3, :], sector.k4) assert_allclose(sector.kvec(ALL)[4, :], sector.k5) r = mad.sectortable()[:, :6, :6] k = mad.sectortable()[:, 6, :6] t = mad.sectortable2() num_elems = len(mad.sequence.s1.elements) assert t.shape == (num_elems, 6, 6, 6) assert r.shape == (num_elems, 6, 6) assert k.shape == (num_elems, 6) assert_allclose(t[:, 0, 0, 0], sector.t111) assert_allclose(t[:, 1, 5, 3], sector.t264) assert_allclose(t[:, 3, 0, 3], sector.t414) assert_allclose(t[:, 4, 4, 4], sector.t555) assert_allclose(r[:, 0, 0], sector.r11) assert_allclose(r[:, 1, 5], sector.r26) assert_allclose(r[:, 3, 0], sector.r41) assert_allclose(r[:, 4, 4], sector.r55) assert_allclose(k[:, 0], sector.k1) assert_allclose(k[:, 1], sector.k2) assert_allclose(k[:, 3], sector.k4) assert_allclose(k[:, 4], sector.k5) def test_selected_columns(mad, lib): mad.input(SEQU) mad.command.beam() mad.use('s1') mad.select(flag='twiss', column=['s', 'x', 'y']) table = mad.twiss(sequence='s1', betx=1, bety=1) assert set(table) > {'s', 'x', 'y', 'betx', 'bety'} assert set(table.copy()) > {'s', 'x', 'y', 'betx', 'bety'} assert table.selected_columns() == ['s', 'x', 'y'] assert table.selection().col_names() == ['s', 'x', 'y'] assert table.selection().copy().keys() == {'s', 'x', 'y'} mad.select(flag='twiss', clear=True) mad.select(flag='twiss', column=['betx', 'bety']) lib.apply_table_selections('twiss') table = mad.table.twiss assert set(table) > {'s', 'x', 'y', 'betx', 'bety'} assert set(table.copy()) > {'s', 'x', 'y', 'betx', 'bety'} assert table.selected_columns() == ['betx', 'bety'] assert table.selection().col_names() == ['betx', 'bety'] assert table.selection().copy().keys() == {'betx', 'bety'} def test_table_selected_rows(mad, lib): mad.input(SEQU) mad.command.beam() mad.use('s1') def check_selection(table, name): assert_equal( table.column(name, rows='selected'), table[name][table.selected_rows()]) assert_equal( table.column(name, rows='selected'), table.selection()[name]) mad.select(flag='twiss', class_='quadrupole') table = mad.twiss(sequence='s1', betx=1, bety=1) assert table.selected_rows() == [2, 4] check_selection(table, 'alfx') check_selection(table, 'alfy') check_selection(table, 'betx') check_selection(table, 'bety') mad.select(flag='twiss', clear=True) mad.select(flag='twiss', class_='drift') lib.apply_table_selections('twiss') table = mad.table.twiss assert table.selected_rows() == [1, 3, 5, 7] check_selection(table, 'alfx') check_selection(table, 'alfy') check_selection(table, 'betx') check_selection(table, 'bety') def test_table_selected_rows_mask(mad, lib): mad.input(SEQU) mad.command.beam() mad.use('s1') mad.select(flag='twiss', class_='quadrupole') table = mad.twiss(sequence='s1', betx=1, bety=1) mask = lib.get_table_selected_rows_mask('twiss') assert mask.shape == (len(mad.sequence.s1.expanded_elements), ) assert_equal(mask.nonzero(), (table.selected_rows(), )) def test_attr(mad): assert hasattr(mad, 'constraint') assert hasattr(mad, 'constraint_') assert hasattr(mad, 'global_') assert not hasattr(mad, 'foobar') assert not hasattr(mad, '_constraint') def test_expr(mad): g = mad.globals vars = mad.expr_vars g.foo = 1 g.bar = 2 assert set(vars('foo')) == {'foo'} assert set(vars('(foo) * sin(2*pi*bar)')) == {'foo', 'bar'} def test_command(mad): mad.input(SEQU) twiss = mad.command.twiss sbend = mad.elements.sb clone = sbend.clone('foobar', angle="pi/5", l=1) assert 'betx=0' in str(twiss) assert 'angle=' in str(sbend) assert 'tilt' in sbend assert sbend.tilt == 0 assert len(sbend) == len(list(sbend)) assert 'tilt' in list(sbend) assert clone.name == 'foobar' assert clone.base_type.name == 'sbend' assert clone.parent.name == 'sb' assert clone.defs.angle == 'pi / 5' assert clone.angle == approx(0.6283185307179586) assert len(clone) == len(sbend) assert 'angle=0.628' in str(clone) assert 'tilt' not in str(clone) clone.angle = 0.125 clone = mad.elements.foobar # need to update cache assert clone.angle == 0.125 assert len(twiss) == len(list(twiss)) assert 'betx' in list(twiss) assert clone.angle != approx(clone.parent.angle) del clone.angle clone = mad.elements.foobar # need to update cache assert clone.angle == clone.parent.angle with raises(AttributeError): clone.missing_attribute with raises(NotImplementedError): del twiss['betx'] with raises(NotImplementedError): del clone.base_type.angle def test_array_attribute(mad): mad.globals.nine = 9 clone = mad.elements.multipole.clone('foo', knl=[0, 'nine/3', 4]) knl = clone.knl assert knl[0] == 0 assert knl[1] == 3 assert knl[2] == 4 assert len(knl) == 3 assert list(knl) == [0.0, 3.0, 4.0] assert str(knl) == '[0.0, 3.0, 4.0]' knl[1] = '3*nine' assert mad.elements.foo.defs.knl[1] == '3 * nine' assert mad.elements.foo.knl[1] == 27 def test_array_attribute_comparison(mad): mad.globals.nine = 9 foo = mad.elements.multipole.clone('foo', knl=[0, 5, 10]) bar_eq = mad.elements.multipole.clone('bar_eq', knl=[0, 5, 10]) bar_gt = mad.elements.multipole.clone('bar_gt', knl=[0, 6, 10]) bar_lt = mad.elements.multipole.clone('bar_lt', knl=[0, 5, 'nine']) knl = foo.knl knl_eq = bar_eq.knl knl_gt = bar_gt.knl knl_lt = bar_lt.knl assert knl == knl_eq assert not (knl == knl_gt) assert not (knl == knl_lt) assert not (knl < knl_eq) assert knl < knl_gt assert not (knl < knl_lt) assert knl <= knl_eq assert knl <= knl_gt assert not (knl <= knl_lt) assert not (knl > knl_eq) assert not (knl > knl_gt) assert knl > knl_lt assert knl >= knl_eq assert not (knl >= knl_gt) assert knl >= knl_lt def test_command_map(mad): command = mad.command assert 'match' in command assert 'sbend' in command assert 'foooo' not in command assert 'match' in list(command) assert len(command) == len(list(command)) assert 'match' in str(command) assert 'sbend' in str(command) assert 'sbend' in mad.base_types assert 'match' not in mad.base_types def test_comments(mad): var = mad.globals mad('x = 1; ! x = 2;') assert var.x == 1 mad('x = 2; // x = 3;') assert var.x == 2 mad('x = 3; /* x = 4; */') assert var.x == 3 mad('/* x = 3; */ x = 4;') assert var.x == 4 mad('x = 5; ! /* */ x = 6;') assert var.x == 5 mad('x = 5; /* ! */ x = 6;') assert var.x == 6 def test_multiline_input(mad): var = mad.globals mad(''' x = 1; y = 2; ''') assert var.x, 1 assert var.y, 2 mad(''' x = /* 3; y =*/ 4; ''') assert var.x == 4 assert var.y == 2 mad(''' x = 1; /* */ x = 2; */ if (x == 1) { x = 3; } ''') assert var.x == 2 mad(''' x = 1; /* x = 2; */ if (x == 1) { x = 3; } ''') assert var.x == 3 def test_errors(mad): mad.input(SEQU) mad.beam() mad.use(sequence='s1') mad.select(flag='error', range='qp') dkn = [1e-6, 2e-6, 3e-6] dks = [4e-6, 5e-6, 6e-6] mad.efcomp(dkn=dkn, dks=dks) mad.ealign(dx=1e-3, dy=-4e-3) fd = mad.sequence['s1'].expanded_elements['qp'].field_errors al = mad.sequence['s1'].expanded_elements['qp'].align_errors expected_dkn = np.hstack((dkn, np.zeros(len(fd.dkn) - len(dkn)))) expected_dks = np.hstack((dks, np.zeros(len(fd.dks) - len(dks)))) assert_allclose(fd.dkn, expected_dkn) assert_allclose(fd.dks, expected_dks) assert_allclose(al.dx, 1e-3) assert_allclose(al.dy, -4e-3) def test_subsequence(mad): mad.input(""" d1: RBEND, l=0.1, angle=0.1; seq1: sequence, l=0.1; d1.1: d1, at=0.05; endsequence; seq2: sequence, l=0.2; seq1, at=0.05; seq1, at=0.15; endsequence; """) seq2 = mad.sequence.seq2 assert isinstance(seq2.elements['seq1'], Sequence) assert seq2.elements['seq1'].name == 'seq1' assert seq2.elements['seq1'].element_names() == \ mad.sequence.seq1.element_names() def test_dframe_after_use(mad): mad.input(""" mqf.k1 = 0.3037241107; mqd.k1 = -0.3037241107; fodo: sequence, l=10, refer=entry; mqf: quadrupole, at=0, l=1, k1:=mqf.k1; dff: drift, at=1, l=4; mqd: quadrupole, at=5, l=1, k1:=mqd.k1; dfd: drift, at=6, l=4; endsequence; beam; use, sequence=fodo; twiss, sequence=fodo, x=0.1; """) index = ['#s', 'mqf', 'dff', 'mqd', 'dfd', '#e'] names = ['fodo$start', 'mqf', 'dff', 'mqd', 'dfd', 'fodo$end'] twiss = mad.table.twiss assert index == twiss.row_names() assert index == twiss.dframe().index.tolist() assert names == twiss.dframe(index='name').index.tolist() mad.use(sequence='fodo') twiss = mad.table.twiss # Should still work: assert names == twiss.dframe(index='name').index.tolist() # The following assert demonstrates the current behaviour and is # meant to detect if the MAD-X implementation changes. It may lead # to crashes or change in the future. In that case, please remove # this line. It does not represent desired behaviour! assert mad.table.twiss.row_names() == \ ['#s', '#e', 'dfd', 'mqd', 'dff', 'mqf']
24,594
0
1,077
beca016de282d8ad828e46810f9fa27aac015a7f
4,852
py
Python
geneticpython/engines/single_objective/single_objective_engine.py
ngocjr7/geneticpython
4b4157523ce13b3da56cef61282cb0a984cd317b
[ "MIT" ]
null
null
null
geneticpython/engines/single_objective/single_objective_engine.py
ngocjr7/geneticpython
4b4157523ce13b3da56cef61282cb0a984cd317b
[ "MIT" ]
null
null
null
geneticpython/engines/single_objective/single_objective_engine.py
ngocjr7/geneticpython
4b4157523ce13b3da56cef61282cb0a984cd317b
[ "MIT" ]
null
null
null
""" File: single_objective_engine.py Author: ngocjr7 Email: [email protected] Github: https://github.com/ngocjr7 Description: """ from __future__ import absolute_import from typing import List, Union, Callable from functools import wraps from collections import OrderedDict from ..geneticengine import GeneticEngine from ...core.population import Population from ...core.operators import Selection, Crossover, Mutation, Replacement from ...core.individual import Individual from ...callbacks import Callback, CallbackList from ...callbacks import History import math
38.816
83
0.557708
""" File: single_objective_engine.py Author: ngocjr7 Email: [email protected] Github: https://github.com/ngocjr7 Description: """ from __future__ import absolute_import from typing import List, Union, Callable from functools import wraps from collections import OrderedDict from ..geneticengine import GeneticEngine from ...core.population import Population from ...core.operators import Selection, Crossover, Mutation, Replacement from ...core.individual import Individual from ...callbacks import Callback, CallbackList from ...callbacks import History import math class SingleObjectiveEngine(GeneticEngine): def __init__(self, population: Population, objective: Callable[[Individual], Union[float, int]] = None, selection: Selection = None, selection_size: int = None, crossover: Crossover = None, mutation: Mutation = None, replacement: Replacement = None, callbacks: List[Callback] = None, generations: int = 100, random_state: int = None): callback_list = CallbackList( callbacks, add_history=True, add_progbar=True) super(SingleObjectiveEngine, self).__init__(population=population, objective=objective, selection=selection, selection_size=selection_size, crossover=crossover, mutation=mutation, replacement=replacement, callbacks=callback_list, generations=generations, random_state=random_state) def get_best_indv(self) -> Individual: best_indv = min(self.population.individuals, key=lambda indv: indv._objective) return best_indv.clone() def _update_metrics(self): self.metrics = self.metrics or OrderedDict() self.metrics['best_objective'] = self.get_best_indv().objective def _update_logs(self, logs): logs = logs or {} logs.update(self.metrics or OrderedDict()) return logs def compute_objectives(self, population: List[Individual]) -> List[Individual]: ret = list() # compute objectives for indv in population: if self.objective is None: raise ValueError(f"Engine has no registered objective functions") indv._coefficient = self.coefficient indv._objective = self.objective(indv) ret.append(indv) return ret def minimize_objective(self, fn): """ register objective function """ @wraps(fn) def _fn_minimization_with_objective_check(indv): ''' A wrapper function for objective function with objective value check. ''' # Check indv type. if not isinstance(indv, Individual): raise TypeError( 'indv\'s class must be subclass of IndividualBase') # Check objective. objective = float(fn(indv)) is_invalid = not isinstance( objective, (float, int)) or (math.isnan(objective)) if is_invalid: msg = 'objective value(value: {}, type: {}) is invalid' msg = msg.format(objective, type(objective)) raise ValueError(msg) return objective self.objective = _fn_minimization_with_objective_check self.coefficient = 1 def maximize_objective(self, fn): """ register maximization of objective function """ @wraps(fn) def _fn_maximization_with_objective_check(indv): ''' A wrapper function for objective function with objective value check. ''' # Check indv type. if not isinstance(indv, Individual): raise TypeError( 'indv\'s class must be subclass of IndividualBase') # Check objective. objective = float(fn(indv)) is_invalid = not isinstance( objective, (float, int)) or (math.isnan(objective)) if is_invalid: msg = 'objective value(value: {}, type: {}) is invalid' msg = msg.format(objective, type(objective)) raise ValueError(msg) return -objective self.objective = _fn_maximization_with_objective_check self.coefficient = -1
2,127
2,130
23
6c1a2218b3975b6c65e1c36ce24d867d86a06bee
517
py
Python
timing.py
darkless456/Python
1ba37d028e4a818ccfffc18682c1bac15554e3ac
[ "MIT" ]
null
null
null
timing.py
darkless456/Python
1ba37d028e4a818ccfffc18682c1bac15554e3ac
[ "MIT" ]
null
null
null
timing.py
darkless456/Python
1ba37d028e4a818ccfffc18682c1bac15554e3ac
[ "MIT" ]
null
null
null
# timing.py import datetime, calendar today = datetime.date.today() yesterday = today - datetime.timedelta(days = 1) tomorrow = today + datetime.timedelta(days = 1) print(yesterday, today, tomorrow) # ------------------------- ''' last_friday = datetime.date.today() oneday = datetime.timedelta(days = 1) while last_friday.weekday() != calendar.FRIDAY : last_friday = oneday print(last_friday.strftime('%A, %d-%b-%Y')) ''' t = datetime.datetime(2012,9,3,21,30) k = datetime.date.today() print(t, '\n', k)
19.884615
48
0.659574
# timing.py import datetime, calendar today = datetime.date.today() yesterday = today - datetime.timedelta(days = 1) tomorrow = today + datetime.timedelta(days = 1) print(yesterday, today, tomorrow) # ------------------------- ''' last_friday = datetime.date.today() oneday = datetime.timedelta(days = 1) while last_friday.weekday() != calendar.FRIDAY : last_friday = oneday print(last_friday.strftime('%A, %d-%b-%Y')) ''' t = datetime.datetime(2012,9,3,21,30) k = datetime.date.today() print(t, '\n', k)
0
0
0
1676722d3f346db563fa9c4d25ad5528e4cd54fa
25,385
py
Python
manticore/core/smtlib/visitors.py
Srinivas11789/manticore
af3c6aada811833864efaccef7477f14e9b5e0dd
[ "Apache-2.0" ]
null
null
null
manticore/core/smtlib/visitors.py
Srinivas11789/manticore
af3c6aada811833864efaccef7477f14e9b5e0dd
[ "Apache-2.0" ]
null
null
null
manticore/core/smtlib/visitors.py
Srinivas11789/manticore
af3c6aada811833864efaccef7477f14e9b5e0dd
[ "Apache-2.0" ]
null
null
null
from manticore.utils.helpers import CacheDict from .expression import * from functools import lru_cache import logging import operator logger = logging.getLogger(__name__) class Visitor(object): ''' Class/Type Visitor Inherit your class visitor from this one and get called on a different visiting function for each type of expression. It will call the first implemented method for the __mro__ class order. For example for a BitVecAdd it will try visit_BitVecAdd() if not defined then it will try with visit_BitVecOperation() if not defined then it will try with visit_BitVec() if not defined then it will try with visit_Operation() if not defined then it will try with visit_Expression() Other class named visitors are: visit_Constant() visit_Variable() visit_Operation() visit_BitVec() visit_Bool() visit_Array() ''' @property def visit(self, node, use_fixed_point=False): ''' The entry point of the visitor. The exploration algorithm is a DFS post-order traversal The implementation used two stacks instead of a recursion The final result is store in self.result :param node: Node to explore :type node: Expression :param use_fixed_point: if True, it runs _methods until a fixed point is found :type use_fixed_point: Bool ''' cache = self._cache visited = set() stack = [] stack.append(node) while stack: node = stack.pop() if node in cache: self.push(cache[node]) elif isinstance(node, Operation): if node in visited: operands = [self.pop() for _ in range(len(node.operands))] value = self._method(node, *operands) visited.remove(node) self.push(value) cache[node] = value else: visited.add(node) stack.append(node) stack.extend(node.operands) else: self.push(self._method(node)) if use_fixed_point: old_value = None new_value = self.pop() while old_value is not new_value: self.visit(new_value) old_value = new_value new_value = self.pop() self.push(new_value) @staticmethod class Translator(Visitor): ''' Simple visitor to translate an expression into something else ''' class GetDeclarations(Visitor): ''' Simple visitor to collect all variables in an expression or set of expressions ''' @property class GetDepth(Translator): ''' Simple visitor to collect all variables in an expression or set of expressions ''' constant_folder_simplifier_cache = CacheDict(max_size=150000, flush_perc=25) @lru_cache(maxsize=128) arithmetic_simplifier_cache = CacheDict(max_size=150000, flush_perc=25) @lru_cache(maxsize=128) @lru_cache(maxsize=128) class TranslatorSmtlib(Translator): ''' Simple visitor to translate an expression to its smtlib representation ''' unique = 0 @property translation_table = { BoolNot: 'not', BoolEq: '=', BoolAnd: 'and', BoolOr: 'or', BoolXor: 'xor', BoolITE: 'ite', BitVecAdd: 'bvadd', BitVecSub: 'bvsub', BitVecMul: 'bvmul', BitVecDiv: 'bvsdiv', BitVecUnsignedDiv: 'bvudiv', BitVecMod: 'bvsmod', BitVecRem: 'bvsrem', BitVecUnsignedRem: 'bvurem', BitVecShiftLeft: 'bvshl', BitVecShiftRight: 'bvlshr', BitVecArithmeticShiftLeft: 'bvashl', BitVecArithmeticShiftRight: 'bvashr', BitVecAnd: 'bvand', BitVecOr: 'bvor', BitVecXor: 'bvxor', BitVecNot: 'bvnot', BitVecNeg: 'bvneg', LessThan: 'bvslt', LessOrEqual: 'bvsle', Equal: '=', GreaterThan: 'bvsgt', GreaterOrEqual: 'bvsge', UnsignedLessThan: 'bvult', UnsignedLessOrEqual: 'bvule', UnsignedGreaterThan: 'bvugt', UnsignedGreaterOrEqual: 'bvuge', BitVecSignExtend: '(_ sign_extend %d)', BitVecZeroExtend: '(_ zero_extend %d)', BitVecExtract: '(_ extract %d %d)', BitVecConcat: 'concat', BitVecITE: 'ite', ArrayStore: 'store', ArraySelect: 'select', } @property @property class Replace(Visitor): ''' Simple visitor to replaces expressions '''
34.869505
167
0.593146
from manticore.utils.helpers import CacheDict from .expression import * from functools import lru_cache import logging import operator logger = logging.getLogger(__name__) class Visitor(object): ''' Class/Type Visitor Inherit your class visitor from this one and get called on a different visiting function for each type of expression. It will call the first implemented method for the __mro__ class order. For example for a BitVecAdd it will try visit_BitVecAdd() if not defined then it will try with visit_BitVecOperation() if not defined then it will try with visit_BitVec() if not defined then it will try with visit_Operation() if not defined then it will try with visit_Expression() Other class named visitors are: visit_Constant() visit_Variable() visit_Operation() visit_BitVec() visit_Bool() visit_Array() ''' def __init__(self, cache=None, **kwargs): super().__init__() self._stack = [] self._cache = {} if cache is None else cache def push(self, value): assert value is not None self._stack.append(value) def pop(self): if len(self._stack) == 0: return None result = self._stack.pop() return result @property def result(self): assert len(self._stack) == 1 return self._stack[-1] def _method(self, expression, *args): #Special case. Need to get the unsleeved version of the array if isinstance(expression, ArrayProxy): expression = expression.array assert expression.__class__.__mro__[-1] is object for cls in expression.__class__.__mro__: sort = cls.__name__ methodname = 'visit_%s' % sort if hasattr(self, methodname): value = getattr(self, methodname)(expression, *args) if value is not None: assert isinstance(value, Expression) return value return self._rebuild(expression, args) def visit(self, node, use_fixed_point=False): ''' The entry point of the visitor. The exploration algorithm is a DFS post-order traversal The implementation used two stacks instead of a recursion The final result is store in self.result :param node: Node to explore :type node: Expression :param use_fixed_point: if True, it runs _methods until a fixed point is found :type use_fixed_point: Bool ''' cache = self._cache visited = set() stack = [] stack.append(node) while stack: node = stack.pop() if node in cache: self.push(cache[node]) elif isinstance(node, Operation): if node in visited: operands = [self.pop() for _ in range(len(node.operands))] value = self._method(node, *operands) visited.remove(node) self.push(value) cache[node] = value else: visited.add(node) stack.append(node) stack.extend(node.operands) else: self.push(self._method(node)) if use_fixed_point: old_value = None new_value = self.pop() while old_value is not new_value: self.visit(new_value) old_value = new_value new_value = self.pop() self.push(new_value) @staticmethod def _rebuild(expression, operands): if isinstance(expression, Constant): return expression if isinstance(expression, Operation): if any(x is not y for x, y in zip(expression.operands, operands)): import copy aux = copy.copy(expression) aux._operands = operands return aux return expression class Translator(Visitor): ''' Simple visitor to translate an expression into something else ''' def _method(self, expression, *args): #Special case. Need to get the unsleeved version of the array if isinstance(expression, ArrayProxy): expression = expression.array assert expression.__class__.__mro__[-1] is object for cls in expression.__class__.__mro__: sort = cls.__name__ methodname = 'visit_{:s}'.format(sort) if hasattr(self, methodname): value = getattr(self, methodname)(expression, *args) if value is not None: return value raise Exception("No translation for this {}".format(expression)) class GetDeclarations(Visitor): ''' Simple visitor to collect all variables in an expression or set of expressions ''' def __init__(self, **kwargs): super().__init__(**kwargs) self.variables = set() def visit_Variable(self, expression): self.variables.add(expression) @property def result(self): return self.variables class GetDepth(Translator): ''' Simple visitor to collect all variables in an expression or set of expressions ''' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def visit_Expression(self, expression): return 1 def visit_Operation(self, expression, *operands): return 1 + max(operands) def get_depth(exp): visitor = GetDepth() visitor.visit(exp) return visitor.result class PrettyPrinter(Visitor): def __init__(self, depth=None, **kwargs): super().__init__(**kwargs) self.output = '' self.indent = 0 self.depth = depth def _print(self, s, e=None): self.output += ' ' * self.indent + str(s) # + '(%016x)'%hash(e) self.output += '\n' def visit(self, expression): ''' Overload Visitor.visit because: - We need a pre-order traversal - We use a recursion as it makes it easier to keep track of the indentation ''' self._method(expression) def _method(self, expression, *args): ''' Overload Visitor._method because we want to stop to iterate over the visit_ functions as soon as a valid visit_ function is found ''' assert expression.__class__.__mro__[-1] is object for cls in expression.__class__.__mro__: sort = cls.__name__ methodname = 'visit_%s' % sort method = getattr(self, methodname, None) if method is not None: method(expression, *args) return return def visit_Operation(self, expression, *operands): self._print(expression.__class__.__name__, expression) self.indent += 2 if self.depth is None or self.indent < self.depth * 2: for o in expression.operands: self.visit(o) else: self._print('...') self.indent -= 2 return '' def visit_BitVecExtract(self, expression): self._print(expression.__class__.__name__ + '{%d:%d}' % (expression.begining, expression.end), expression) self.indent += 2 if self.depth is None or self.indent < self.depth * 2: for o in expression.operands: self.visit(o) else: self._print('...') self.indent -= 2 return '' def visit_Constant(self, expression): self._print(expression.value) return '' def visit_Variable(self, expression): self._print(expression.name) return '' @property def result(self): return self.output def pretty_print(expression, **kwargs): if not isinstance(expression, Expression): return str(expression) pp = PrettyPrinter(**kwargs) pp.visit(expression) return pp.result class ConstantFolderSimplifier(Visitor): def __init__(self, **kw): super().__init__(**kw) operations = {BitVecAdd: operator.__add__, BitVecSub: operator.__sub__, BitVecMul: operator.__mul__, BitVecDiv: operator.__truediv__, BitVecShiftLeft: operator.__lshift__, BitVecShiftRight: operator.__rshift__, BitVecAnd: operator.__and__, BitVecOr: operator.__or__, BitVecXor: operator.__xor__, BitVecNot: operator.__not__, BitVecNeg: operator.__invert__, LessThan: operator.__lt__, LessOrEqual: operator.__le__, Equal: operator.__eq__, GreaterThan: operator.__gt__, GreaterOrEqual: operator.__ge__, BoolAnd: operator.__and__, BoolOr: operator.__or__, BoolNot: operator.__not__} def visit_BitVecConcat(self, expression, *operands): if all(isinstance(o, Constant) for o in operands): result = 0 for o in operands: result <<= o.size result |= o.value return BitVecConstant(expression.size, result, taint=expression.taint) def visit_BitVecZeroExtend(self, expression, *operands): if all(isinstance(o, Constant) for o in operands): return BitVecConstant(expression.size, operands[0].value, taint=expression.taint) def visit_BitVecSignExtend(self, expression, *operands): if expression.extend == 0: return operands[0] def visit_BitVecExtract(self, expression, *operands): if all(isinstance(o, Constant) for o in expression.operands): value = expression.operands[0].value begining = expression.begining end = expression.end value = value >> begining mask = 2**(end - begining + 1) - 1 value = value & mask return BitVecConstant(expression.size, value, taint=expression.taint) def visit_BoolAnd(self, expression, a, b): if isinstance(a, Constant) and a.value == True: return b if isinstance(b, Constant) and b.value == True: return a def visit_BoolOr(self, expression, a, b): if isinstance(a, Constant) and a.value == False: return b if isinstance(b, Constant) and b.value == False: return a def visit_Operation(self, expression, *operands): ''' constant folding, if all operands of an expression are a Constant do the math ''' operation = self.operations.get(type(expression), None) if operation is not None and \ all(isinstance(o, Constant) for o in operands): value = operation(*(x.value for x in operands)) if isinstance(expression, BitVec): return BitVecConstant(expression.size, value, taint=expression.taint) else: isinstance(expression, Bool) return BoolConstant(value, taint=expression.taint) else: if any(operands[i] is not expression.operands[i] for i in range(len(operands))): expression = self._rebuild(expression, operands) return expression constant_folder_simplifier_cache = CacheDict(max_size=150000, flush_perc=25) @lru_cache(maxsize=128) def constant_folder(expression): global constant_folder_simplifier_cache simp = ConstantFolderSimplifier(cache=constant_folder_simplifier_cache) simp.visit(expression, use_fixed_point=True) return simp.result class ArithmeticSimplifier(Visitor): def __init__(self, parent=None, **kw): super().__init__(**kw) @staticmethod def _same_constant(a, b): return isinstance(a, Constant) and\ isinstance(b, Constant) and\ a.value == b.value or a is b @staticmethod def _changed(expression, operands): if isinstance(expression, Constant) and len(operands) > 0: return True arity = len(operands) return any(operands[i] is not expression.operands[i] for i in range(arity)) def visit_Operation(self, expression, *operands): ''' constant folding, if all operands of an expression are a Constant do the math ''' if all(isinstance(o, Constant) for o in operands): expression = constant_folder(expression) if self._changed(expression, operands): expression = self._rebuild(expression, operands) return expression def visit_BitVecZeroExtend(self, expression, *operands): if self._changed(expression, operands): return BitVecZeroExtend(expression.size, *operands, taint=expression.taint) else: return expression def visit_BitVecITE(self, expression, *operands): if isinstance(expression.operands[0], Constant): if expression.operands[0].value: result = expression.operands[1] else: result = expression.operands[2] import copy result = copy.copy(result) result._taint |= expression.operands[0].taint return result if self._changed(expression, operands): return BitVecITE(expression.size, *operands, taint=expression.taint) def visit_BitVecExtract(self, expression, *operands): ''' extract(sizeof(a), 0)(a) ==> a extract(16, 0)( concat(a,b,c,d) ) => concat(c, d) extract(m,M)(and/or/xor a b ) => and/or/xor((extract(m,M) a) (extract(m,M) a) ''' op = expression.operands[0] begining = expression.begining end = expression.end # extract(sizeof(a), 0)(a) ==> a if begining == 0 and end + 1 == op.size: return op elif isinstance(op, BitVecConcat): new_operands = [] bitcount = 0 for item in reversed(op.operands): if begining >= item.size: begining -= item.size else: if bitcount < expression.size: new_operands.append(item) bitcount += item.size if begining != expression.begining: return BitVecExtract(BitVecConcat(sum([x.size for x in new_operands]), *reversed(new_operands)), begining, expression.size, taint=expression.taint) if isinstance(op, (BitVecAnd, BitVecOr, BitVecXor)): bitoperand_a, bitoperand_b = op.operands return op.__class__(BitVecExtract(bitoperand_a, begining, expression.size), BitVecExtract(bitoperand_b, begining, expression.size), taint=expression.taint) def visit_BitVecAdd(self, expression, *operands): ''' a + 0 ==> a 0 + a ==> a ''' left = expression.operands[0] right = expression.operands[1] if isinstance(right, BitVecConstant): if right.value == 0: return left if isinstance(left, BitVecConstant): if left.value == 0: return right def visit_BitVecSub(self, expression, *operands): ''' a - 0 ==> 0 (a + b) - b ==> a (b + a) - b ==> a ''' left = expression.operands[0] right = expression.operands[1] if isinstance(left, BitVecAdd): if self._same_constant(left.operands[0], right): return left.operands[1] elif self._same_constant(left.operands[1], right): return left.operands[0] def visit_BitVecOr(self, expression, *operands): ''' a | 0 => a 0 | a => a 0xffffffff & a => 0xffffffff a & 0xffffffff => 0xffffffff ''' left = expression.operands[0] right = expression.operands[1] if isinstance(right, BitVecConstant): if right.value == 0: return left elif right.value == left.mask: return right elif isinstance(left, BitVecOr): left_left = left.operands[0] left_right = left.operands[1] if isinstance(right, Constant): return BitVecOr(left_left, (left_right | right), taint=expression.taint) elif isinstance(left, BitVecConstant): return BitVecOr(right, left, taint=expression.taint) def visit_BitVecAnd(self, expression, *operands): ''' ct & x => x & ct move constants to the right a & 0 => 0 remove zero a & 0xffffffff => a remove full mask (b & ct2) & ct => b & (ct&ct2) associative property (a & (b | c) => a&b | a&c distribute over | ''' left = expression.operands[0] right = expression.operands[1] if isinstance(right, BitVecConstant): if right.value == 0: return right elif right.value == right.mask: return left elif isinstance(left, BitVecAnd): left_left = left.operands[0] left_right = left.operands[1] if isinstance(right, Constant): return BitVecAnd(left_left, left_right & right, taint=expression.taint) elif isinstance(left, BitVecOr): left_left = left.operands[0] left_right = left.operands[1] return BitVecOr(right & left_left, right & left_right, taint=expression.taint) elif isinstance(left, BitVecConstant): return BitVecAnd(right, left, taint=expression.taint) def visit_BitVecShiftLeft(self, expression, *operands): ''' a << 0 => a remove zero a << ct => 0 if ct > sizeof(a) remove big constant shift ''' left = expression.operands[0] right = expression.operands[1] if isinstance(right, BitVecConstant): if right.value == 0: return left elif right.value >= right.size: return left def visit_ArraySelect(self, expression, *operands): ''' ArraySelect (ArrayStore((ArrayStore(x0,v0) ...),xn, vn), x0) -> v0 ''' arr, index = operands if isinstance(arr, ArrayVariable): return if isinstance(index, BitVecConstant): ival = index.value # props are slow and using them in tight loops should be avoided, esp when they offer no additional validation # arr._operands[1] = arr.index, arr._operands[0] = arr.array while isinstance(arr, ArrayStore) and isinstance(arr._operands[1], BitVecConstant) and arr._operands[1]._value != ival: arr = arr._operands[0] # arr.array if isinstance(index, BitVecConstant) and isinstance(arr, ArrayStore) and isinstance(arr.index, BitVecConstant) and arr.index.value == index.value: return arr.value else: if arr is not expression.array: return arr.select(index) def visit_Expression(self, expression, *operands): assert len(operands) == 0 assert not isinstance(expression, Operation) return expression arithmetic_simplifier_cache = CacheDict(max_size=150000, flush_perc=25) @lru_cache(maxsize=128) def arithmetic_simplify(expression): global arithmetic_simplifier_cache simp = ArithmeticSimplifier(cache=arithmetic_simplifier_cache) simp.visit(expression, use_fixed_point=True) return simp.result def to_constant(expression): value = arithmetic_simplify(expression) if isinstance(value, Constant): return value.value elif isinstance(value, Array): if value.index_max: ba = bytearray() for i in range(value.index_max): value_i = simplify(value[i]) if not isinstance(value_i, Constant): break ba.append(value_i.value) else: return ba return value @lru_cache(maxsize=128) def simplify(expression): expression = constant_folder(expression) expression = arithmetic_simplify(expression) return expression class TranslatorSmtlib(Translator): ''' Simple visitor to translate an expression to its smtlib representation ''' unique = 0 def __init__(self, use_bindings=False, *args, **kw): assert 'bindings' not in kw super().__init__(*args, **kw) self.use_bindings = use_bindings self._bindings_cache = {} self._bindings = [] def _add_binding(self, expression, smtlib): if not self.use_bindings or len(smtlib) <= 10: return smtlib if smtlib in self._bindings_cache: return self._bindings_cache[smtlib] TranslatorSmtlib.unique += 1 name = 'a_%d' % TranslatorSmtlib.unique self._bindings.append((name, expression, smtlib)) self._bindings_cache[expression] = name return name @property def bindings(self): return self._bindings translation_table = { BoolNot: 'not', BoolEq: '=', BoolAnd: 'and', BoolOr: 'or', BoolXor: 'xor', BoolITE: 'ite', BitVecAdd: 'bvadd', BitVecSub: 'bvsub', BitVecMul: 'bvmul', BitVecDiv: 'bvsdiv', BitVecUnsignedDiv: 'bvudiv', BitVecMod: 'bvsmod', BitVecRem: 'bvsrem', BitVecUnsignedRem: 'bvurem', BitVecShiftLeft: 'bvshl', BitVecShiftRight: 'bvlshr', BitVecArithmeticShiftLeft: 'bvashl', BitVecArithmeticShiftRight: 'bvashr', BitVecAnd: 'bvand', BitVecOr: 'bvor', BitVecXor: 'bvxor', BitVecNot: 'bvnot', BitVecNeg: 'bvneg', LessThan: 'bvslt', LessOrEqual: 'bvsle', Equal: '=', GreaterThan: 'bvsgt', GreaterOrEqual: 'bvsge', UnsignedLessThan: 'bvult', UnsignedLessOrEqual: 'bvule', UnsignedGreaterThan: 'bvugt', UnsignedGreaterOrEqual: 'bvuge', BitVecSignExtend: '(_ sign_extend %d)', BitVecZeroExtend: '(_ zero_extend %d)', BitVecExtract: '(_ extract %d %d)', BitVecConcat: 'concat', BitVecITE: 'ite', ArrayStore: 'store', ArraySelect: 'select', } def visit_BitVecConstant(self, expression): assert isinstance(expression, BitVecConstant) if expression.size == 1: return '#' + bin(expression.value & expression.mask)[1:] else: return '#x%0*x' % (int(expression.size / 4), expression.value & expression.mask) def visit_BoolConstant(self, expression): return expression.value and 'true' or 'false' def visit_Variable(self, expression): return expression.name def visit_ArraySelect(self, expression, *operands): array_smt, index_smt = operands if isinstance(expression.array, ArrayStore): array_smt = self._add_binding(expression.array, array_smt) return '(select %s %s)' % (array_smt, index_smt) def visit_Operation(self, expression, *operands): operation = self.translation_table[type(expression)] if isinstance(expression, (BitVecSignExtend, BitVecZeroExtend)): operation = operation % expression.extend elif isinstance(expression, BitVecExtract): operation = operation % (expression.end, expression.begining) operands = [self._add_binding(*x) for x in zip(expression.operands, operands)] return '(%s %s)' % (operation, ' '.join(operands)) @property def results(self): raise Exception("NOOO") @property def result(self): output = super().result if self.use_bindings: for name, expr, smtlib in reversed(self._bindings): output = '( let ((%s %s)) %s )' % (name, smtlib, output) return output def translate_to_smtlib(expression, **kwargs): translator = TranslatorSmtlib(**kwargs) translator.visit(expression) return translator.result class Replace(Visitor): ''' Simple visitor to replaces expressions ''' def __init__(self, bindings=None, **kwargs): super().__init__(**kwargs) if bindings is None: raise ValueError("bindings needed in replace") self._replace_bindings = bindings def visit_Variable(self, expression): if expression in self._replace_bindings: return self._replace_bindings[expression] return expression def replace(expression, bindings): if not bindings: return expression visitor = Replace(bindings) visitor.visit(expression, use_fixed_point=True) result_expression = visitor.result #for var in get_variables(result_expression): # assert var not in bindings return result_expression def get_variables(expression): visitor = GetDeclarations() visitor.visit(expression) return visitor.result
10,256
9,441
942
34a65f614b2aed9614eeb0a853f10c891d51443b
280
py
Python
account/urls.py
Wizock/CRUD-master
07fbf3c64610a8725724fc934e66c6be35690cc9
[ "CC0-1.0" ]
1
2022-03-13T09:50:04.000Z
2022-03-13T09:50:04.000Z
account/urls.py
Wizock/TodoButBetter
07fbf3c64610a8725724fc934e66c6be35690cc9
[ "CC0-1.0" ]
null
null
null
account/urls.py
Wizock/TodoButBetter
07fbf3c64610a8725724fc934e66c6be35690cc9
[ "CC0-1.0" ]
null
null
null
from django import urls from django.conf.urls import include, url from django.contrib.auth.forms import AdminPasswordChangeForm from django.urls import path from .views import * urlpatterns = [ path(r'user/<str:usr>/', accountView), path('register_/', register_), ]
23.333333
61
0.739286
from django import urls from django.conf.urls import include, url from django.contrib.auth.forms import AdminPasswordChangeForm from django.urls import path from .views import * urlpatterns = [ path(r'user/<str:usr>/', accountView), path('register_/', register_), ]
0
0
0
eb106290ccfcc64601c7996ff5449b815f8ad55c
1,020
py
Python
pyaibot.py
linsicheng20060818/PythonExercises
dff362b066de54186d8e2a71f0fb6b8fcb1c8f2a
[ "MIT" ]
2
2019-01-05T13:34:08.000Z
2019-01-06T05:33:17.000Z
pyaibot.py
linsicheng20060818/PythonExercises
dff362b066de54186d8e2a71f0fb6b8fcb1c8f2a
[ "MIT" ]
null
null
null
pyaibot.py
linsicheng20060818/PythonExercises
dff362b066de54186d8e2a71f0fb6b8fcb1c8f2a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """try: import jieba except: print("please install jieba first.") input("press any key to continue") quit()"""
25.5
73
0.435294
# -*- coding: utf-8 -*- """try: import jieba except: print("please install jieba first.") input("press any key to continue") quit()""" def chchat(a): import jieba v=False #if a=="quit" or a=="exit" or a=="退出" or a=="再见": # import os # exit()#Error list1=jieba.lcut(a)#jieba分词 #print(list1)#Debug i=0 b="" if list1[i]=="你好": return(a) else: for i in range(len(list1)): if list1[i]=="你": list1[i]="我" elif list1[i]=="我": list1[i]="你" elif list1[i]=="几": import random v=True '''for r in range(len(ni)):#'你'换成'我' list1[r]="我" for i in range(len(wo)):#'我'换成'你' list1[i]="你"''' for i in range(len(list1)): b=b+list1[i] if v==True: return(random.randint(-10,2000)) else: return((b.replace("吗","").replace("?","!")).replace("?","!"))
900
0
22
040bfae6c7070cefcd380adace083b08384a141a
391
py
Python
map_annotate_app/admin.py
tushar-agarwal/WikiNearby
0cc10bdeb1cb0728a6405808cc25f2d9e65dcb95
[ "MIT" ]
2
2018-03-20T21:30:35.000Z
2019-03-19T04:58:42.000Z
map_annotate_app/admin.py
tushar-agarwal/map_annotate
0cc10bdeb1cb0728a6405808cc25f2d9e65dcb95
[ "MIT" ]
2
2016-08-21T13:21:51.000Z
2016-09-07T10:01:24.000Z
map_annotate_app/admin.py
tushar-agarwal/WikiNearby
0cc10bdeb1cb0728a6405808cc25f2d9e65dcb95
[ "MIT" ]
2
2016-10-06T13:47:24.000Z
2017-02-13T23:10:12.000Z
""" This is the C{admin.py} file for C{map_annotate_app}. For more details, see the documentation for C{map_annotate_app}. """ from django.contrib import admin from .models import Crime from .models import CrimeType from .models import Location from .models import Sansad admin.site.register(Location) admin.site.register(Crime) admin.site.register(CrimeType) admin.site.register(Sansad)
23
64
0.792839
""" This is the C{admin.py} file for C{map_annotate_app}. For more details, see the documentation for C{map_annotate_app}. """ from django.contrib import admin from .models import Crime from .models import CrimeType from .models import Location from .models import Sansad admin.site.register(Location) admin.site.register(Crime) admin.site.register(CrimeType) admin.site.register(Sansad)
0
0
0
81256977bc9b0ff7623132bef93f3ba3fe7872ae
4,444
py
Python
parsers.py
ekiwi/parsers
1837fe8c76b813da7befeee99668ab59b51aaefa
[ "BSD-2-Clause" ]
null
null
null
parsers.py
ekiwi/parsers
1837fe8c76b813da7befeee99668ab59b51aaefa
[ "BSD-2-Clause" ]
null
null
null
parsers.py
ekiwi/parsers
1837fe8c76b813da7befeee99668ab59b51aaefa
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2018, University of California, Berkeley # author: Kevin Laeufer <[email protected]> from collections import defaultdict if __name__ == "__main__": g = Grammar() S, B, D, E, F = non_term = g.non_terminal('S', 'B', 'D', 'E', 'F') u, v, w, x, y, z = term = g.terminal('u', 'v', 'w', 'x', 'y', 'z') g.r(S, [u, B, D, z]) g.r(B, [B, v]) g.r(B, [w]) g.r(D, [E, F]) g.r(E, [y]) g.r(E, []) g.r(F, [x]) g.r(F, []) for nt in non_term: print(f"FIRST({nt}): {g.first(nt)}") print() for nt in non_term: print(f"FOLLOW({nt}): {g.follow(nt)}") print() print(g.ll_one(check_conflicts=False))
22.789744
81
0.633213
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2018, University of California, Berkeley # author: Kevin Laeufer <[email protected]> from collections import defaultdict class Symbol: def __init__(self, name, bold=False): self.name = name self._bold = bold def __str__(self): if self._bold: return f"\033[1m{self.name}\033[0m" else: return f"{self.name}" def __repr__(self): return self.name class NonTerminal(Symbol): def __init__(self, name): super().__init__(name, bold=True) class Terminal(Symbol): def __init__(self, name): super().__init__(name) class Epsilon(Terminal): def __init__(self): super().__init__("ε") class Rule: def __init__(self, lhs, rhs): assert isinstance(lhs, NonTerminal) assert isinstance(rhs, list) assert all(isinstance(sym, Symbol) for sym in rhs) self.lhs = lhs self.rhs = rhs def __getitem__(self, item): if item not in {0, 1}: raise IndexError(item) if item == 0: return self.lhs else: return self.rhs def __str__(self): return f"{self.lhs} -> {''.join(str(sym) for sym in self.rhs)}" def __repr__(self): return str(self) class Grammar: def __init__(self): self._syms = [Epsilon(), Terminal('$')] self._rules = [] self._root = None def _make_syms(self, Type, names): syms = [Type(name) for name in names] self._syms += syms return syms def non_terminal(self, *names): return self._make_syms(NonTerminal, names) def terminal(self, *names): return self._make_syms(Terminal, names) def epsilon(self): return self._syms[0] def eof(self): return self._syms[1] def r(self, lhs, rhs): if len(rhs) < 1: rhs = [self.epsilon()] if self._root is None: self._root = lhs # by convention self._rules.append(Rule(lhs, rhs)) def first(self, sym): assert isinstance(sym, Symbol), f"{sym} : {type(sym)}" #print(f"FIRST({sym})") if isinstance(sym, Terminal): return {sym} _first = set() for lhs, rhs in self._rules: if lhs != sym: continue annullable = True for s in rhs: if s == sym: annullable = False break s_first = self.first(s) s_annullable = self.epsilon() in s_first _first = _first | (s_first - {self.epsilon()}) if not s_annullable: annullable = False break if annullable: _first |= {self.epsilon()} return _first def follow(self, non_term): assert isinstance(non_term, NonTerminal) _follow = set() for lhs, rhs in self._rules: if non_term not in rhs: continue for ii, sym in enumerate(rhs): if sym != non_term: continue # scan following symbols followed_by_annulable = True for ff in rhs[ii+1:]: _first = self.first(ff) _follow |= (_first - {self.epsilon()}) if self.epsilon() not in _first: followed_by_annulable = False break if followed_by_annulable: _follow |= self.follow(lhs) if non_term == self._root: _follow |= {self.eof()} return _follow def ll_one(self, check_conflicts=False): non_terms = [s for s in self._syms if isinstance(s, NonTerminal)] table = defaultdict(dict) for nt in non_terms: terms = self.first(nt) if self.epsilon() in terms: terms = (terms - {self.epsilon()}) | self.follow(nt) # pick rule: for tt in terms: applicable_rules = [] for rule in self._rules: if rule.lhs != nt: continue # scan rhs annullable = True for sym in rule.rhs: s_first = self.first(sym) if tt in s_first: applicable_rules.append(rule) break if not self.epsilon() in s_first: annullable = False break if annullable and tt in self.follow(nt): applicable_rules.append(rule) if check_conflicts: if len(applicable_rules) > 1: raise RuntimeError(f"Found multiple applicable rules for ({nt}, {tt}):\n" + '\n'.join(str(r) for r in applicable_rules)) table[nt][tt] = applicable_rules return dict(table) if __name__ == "__main__": g = Grammar() S, B, D, E, F = non_term = g.non_terminal('S', 'B', 'D', 'E', 'F') u, v, w, x, y, z = term = g.terminal('u', 'v', 'w', 'x', 'y', 'z') g.r(S, [u, B, D, z]) g.r(B, [B, v]) g.r(B, [w]) g.r(D, [E, F]) g.r(E, [y]) g.r(E, []) g.r(F, [x]) g.r(F, []) for nt in non_term: print(f"FIRST({nt}): {g.first(nt)}") print() for nt in non_term: print(f"FOLLOW({nt}): {g.follow(nt)}") print() print(g.ll_one(check_conflicts=False))
3,174
-15
612
e6d68e135afb09552ac2f3d818b48fe79807d853
1,387
py
Python
Server.py
louis103/Python-Chat-Application
5212360194236daf5888d296fd71ed92303d7f94
[ "MIT" ]
1
2021-11-22T20:04:16.000Z
2021-11-22T20:04:16.000Z
Server.py
louis103/Python-Chat-Application
5212360194236daf5888d296fd71ed92303d7f94
[ "MIT" ]
null
null
null
Server.py
louis103/Python-Chat-Application
5212360194236daf5888d296fd71ed92303d7f94
[ "MIT" ]
null
null
null
import socket, threading HOST = "127.0.0.1" PORT = 9999 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((HOST, PORT)) server.listen() clients = [] nicknames = [] # broadcast func # handle func # receive func print("******Server is running******") receive()
23.508475
72
0.581831
import socket, threading HOST = "127.0.0.1" PORT = 9999 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((HOST, PORT)) server.listen() clients = [] nicknames = [] # broadcast func def broadcast(message): for client in clients: client.send(message) # handle func def handle(client): while True: try: message = client.recv(2048) print(f"{nicknames[clients.index(client)]} says {message}") broadcast(message) except: index = clients.index(client) clients.remove(client) nickname = nicknames[index] nicknames.remove(nickname) break # receive func def receive(): while True: client,address = server.accept() print(f"Connected with {str(address)}!") client.send("NICKNAME".encode("utf-8")) nickname = client.recv(2048).decode("utf-8") nicknames.append(nickname) clients.append(client) print(f"Nickname of new client is {nickname}") broadcast(f"{nickname} joined the chat!\n".encode("utf-8")) client.send("You Have Connected to the server".encode("utf-8")) thread = threading.Thread(target=handle,args=(client,)) thread.start() print("******Server is running******") receive()
999
0
69
d2d464639fd7c2110b4c254cb34f59661eddfc5e
18,069
py
Python
pypsi/core.py
Rudedog9d/pypsi
38dda442b21b8deb569d61076ab0a19c0e78edc8
[ "0BSD" ]
null
null
null
pypsi/core.py
Rudedog9d/pypsi
38dda442b21b8deb569d61076ab0a19c0e78edc8
[ "0BSD" ]
null
null
null
pypsi/core.py
Rudedog9d/pypsi
38dda442b21b8deb569d61076ab0a19c0e78edc8
[ "0BSD" ]
null
null
null
# # Copyright (c) 2015, Adam Meily <[email protected]> # Pypsi - https://github.com/ameily/pypsi # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # ''' Base classes for developing pluggable commands and plugins. ''' import argparse import sys from pypsi.ansi import AnsiCodes, AnsiCode from pypsi.format import get_lines, wrap_line class Plugin(object): ''' A plugin is an object that is able to modify a :py:class:`pypsi.shell.Shell` object's behavior. Whereas a command can be execute from user input, the `Plugin` class does not contain a `run()` function. ''' def __init__(self, preprocess=None, postprocess=None): ''' Constructor can take two parameters: `preprocess` and `postprocess` These values determine where the plugin resides inside of the preprocess and postprocess list. This list, inside of :class:`pypsi.shell.Shell`, is iterated sequentially, from most priority to least. So, the highest priority value is 0, which means it will be the first plugin to run, and the lowest value is 100, which means it will be the last plugin to run. If either value is `None`, the plugin is not added to the processing list. For example, if this plugin only provides a preprocessing functionality, then postprocess should be set to :const:`None`. :param int preprocess: the preprocess priority :param int postprocess: the postprocess priority ''' self.preprocess = preprocess self.postprocess = postprocess def setup(self, shell): # pylint: disable=unused-argument ''' Called after the plugin has been registered to the active shell. :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on failure ''' return 0 def on_input(self, shell, line): # pylint: disable=unused-argument ''' Called after input from the user has been received. The return value is the preprocessed line. This means that modifying the line argument will not populate back. If this function does no preprocessing, return line unmodified. :param pypsi.shell.Shell shell: the active shell :param str line: the current input statement string :returns str: the preprocessed line ''' return line def on_tokenize(self, shell, tokens, origin): # pylint: disable=unused-argument ''' Called after an input string has been tokenized. If this function performs no preprocessing, return the tokens unmodified. :param pypsi.shell.Shell shell: the active shell :param list tokens: the list of :class:`pypsi.cmdline.Token` objects :param str origin: the origin of the input, can be either 'input' if received from a call to `input()` or 'prompt' if the input is the prompt to display to the user :returns list: the list of preprocessed :class:`pypsi.cmdline.Token` objects ''' return tokens def on_input_canceled(self, shell): # pylint: disable=unused-argument ''' Called when the user can canceled entering a statement via SIGINT (Ctrl+C). :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on error ''' return 0 def on_statement_finished(self, shell, rc): # pylint: disable=unused-argument ''' Called when a statement has been completely executed. :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on error ''' return 0 class Command(object): ''' A pluggable command that users can execute. All commands need to derive from this class. When a command is executed by a user, the command's :meth:`run` method will be called. The return value of the :meth:`run` method is used when processing forthcoming commands in the active statement. The return value must be an :class:`int` and follows the Unix standard: 0 on success, less than 0 on error, and greater than 0 given invalid input or incorrect usage. Each command has a topic associated with it. This topic can be referenced by commands such as :class:`pypsi.commands.help.HelpCommand` to categorize commands in help messages. A command can be used as a fallback handler by implementing the :meth:`fallback` method. This is similar to the :meth:`run` method, except that is accepts one more argument: the command name to execute that wasn't found by the shell. The return value of :meth:`fallback` holds the same purpose as the return value of :meth:`run`. By the time :meth:`run` is called, the system streams have been updated to point to the current file streams issued in the statement. For example, if the statement redirects standard out (:attr:`sys.stdout`) to a file, the destination file is automatically opened and :attr:`sys.stdout` is redirected to the opened file stream. Once the command has complete execution, the redirected stream is automatically closed and :attr:`sys.stdout` is set to its original stream. ''' def __init__(self, name, usage=None, brief=None, topic=None, pipe='str'): ''' :param str name: the name of the command which the user will reference in the shell :param str usage: the usage message to be displayed to the user :param str brief: a brief description of the command :param str topic: the topic that this command belongs to :param str pipe: the type of data that will be read from and written to any pipes ''' self.name = name self.usage = usage or '' self.brief = brief or '' self.topic = topic or '' self.pipe = pipe or 'str' def complete(self, shell, args, prefix): # pylint: disable=unused-argument ''' Called when the user attempts a tab-completion action for this command. :param pypsi.shell.Shell shell: the active shell :param list args: the list of arguments, the last one containing the cursor position :param str prefix: the prefix that all items returned must start with :returns list: the list of strings that could complete the current action ''' return [] def usage_error(self, shell, *args): ''' Display an error message that indicates incorrect usage of this command. After the error is displayed, the usage is printed. :param pypsi.shell.Shell shell: the active shell :param args: list of strings that are the error message ''' self.error(shell, *args) print(AnsiCodes.yellow, self.usage, AnsiCodes.reset, sep='') def error(self, shell, *args): # pylint: disable=unused-argument ''' Display an error message to the user. :param pypsi.shell.Shell shell: the active shell :param args: the error message to display ''' msg = "{}: {}".format(self.name, ''.join([str(a) for a in args])) print(AnsiCodes.red, msg, AnsiCodes.reset, file=sys.stderr, sep='') def run(self, shell, args): ''' Execute the command. All commands need to implement this method. :param pypsi.shell.Shell shell: the active shell :param list args: list of string arguments :returns int: 0 on success, less than 0 on error, and greater than 0 on invalid usage ''' raise NotImplementedError() def setup(self, shell): # pylint: disable=unused-argument ''' Called when the plugin has been registered to the active shell. :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on error ''' return 0 def fallback(self, shell, name, args): # pylint: disable=unused-argument ''' Called when this command was set as the fallback command. The only difference between this and :meth:`run` is that this method accepts the command name that was entered by the user. :param pypsi.shell.Shell shell: the active shell :param str name: the name of the command to run :param list args: arguments :returns int: 0 on success, less than 0 on error, and greater than 0 on invalid usage ''' return None class CommandShortCircuit(Exception): ''' Exception raised when the user enter invalid arguments or requests usage information via the -h and --help flags. ''' def __init__(self, code): ''' :param int code: the code the command should return ''' super().__init__(code) self.code = code class PypsiArgParser(argparse.ArgumentParser): ''' Customized :class:`argparse.ArgumentParser` for use in pypsi. This class slightly modifies the base ArgumentParser so that the following occurs: - The whole program does not exit on printing the help message or bad arguments - Any error messages are intercepted and printed on the active shell's error stream - Adds the option to provide callbacks for tab-completing options and parameters ''' def get_options(self): ''' :return: All optional arguments (ex, '-v'/'--verbose') ''' return list(self._op_completers.keys()) def get_option_completer(self, option): ''' Returns the callback for the specified optional argument, Or None if one was not specified. :param str option: The Option :return function: The callback function or None ''' return self._op_completers.get(option, None) def has_value(self, arg): ''' Check if the optional argument has a value associated with it. :param str arg: Optional argument to check :return: True if arg has a value, false otherwise ''' # pylint: disable=protected-access # _option_string_actions is a dictionary containing all of the optional # arguments and the argparse action they should perform. Currently, the # only two actions that store a value are _AppendAction/_StoreAction. # These represent the value passed to 'action' in add_argument: # parser.add_argument('-l', '--long', action='store') action = self._option_string_actions.get(arg, None) return isinstance(action, (argparse._AppendAction, argparse._StoreAction)) def get_positional_completer(self, pos): ''' Get the callback for a positional parameter :param pos: index of the parameter - first param's index = 0 :return: The callback if it exists, else None ''' try: return self._pos_completers[pos] except IndexError: if self._repeating_cb: # A positional parameter is set to repeat return self._repeating_cb return None def get_positional_arg_index(self, args): ''' Get the positional index of a cursor, based on optional arguments and positional arguments :param list args: List of str arguments from the Command Line :return: ''' index = 0 for token in args: if token in self._option_string_actions: # Token is an optional argument ( ex, '-v' / '--verbose' ) if self.has_value(token): # Optional Argument has a value associated with it, so # reduce index to not count it's value as a pos param index -= 1 else: # Is a positional param or value for an optional argument index += 1 # return zero-based index return index - 1 def add_argument(self, *args, completer=None, **kwargs): # pylint: disable=arguments-differ ''' Override add_argument function of argparse.ArgumentParser to handle callback functions. :param args: Positional arguments to pass up to argparse :param function completer: Optional callback function for argument :param kwargs: Keywork arguments to pass up to argparse :return: ''' cb = completer nargs = kwargs.get('nargs', None) chars = self.prefix_chars if not args or len(args) == 1 and args[0][0] not in chars: # If no positional args are supplied or only one is supplied and # it doesn't look like an option string, parse a positional # argument ( from argparse ) if nargs and nargs in ('+', '*', argparse.REMAINDER): # Positional param can repeat # Currently only stores the last repeating completer specified self._repeating_cb = cb self._pos_completers.append(cb) else: # Add an optional argument for arg in args: self._op_completers[arg] = cb # Call argparse.add_argument() return super().add_argument(*args, **kwargs) def pypsi_print(*args, sep=' ', end='\n', file=None, flush=True, width=None, wrap=True, wrap_prefix=None, replace_errors=True): ''' Wraps the functionality of the Python builtin `print` function. The :meth:`pypsi.shell.Shell.bootstrap` overrides the Python :meth:`print` function with :meth:`pypsi_print`. :param str sep: string to print between arguments :param str end: string to print at the end of the output :param file file: output stream, if this is :const:`None`, the default is :data:`sys.stdout` :param bool flush: whether to flush the output stream :param int width: override the stream's width :param bool wrap: whether to word wrap the output :param str wrap_prefix: prefix string to print prior to every new line that is wrapped :param bool replace_errors: replace invalid character points with the '?' character ''' file = file or sys.stdout last = len(args) - 1 def write_safe(data): ''' Write the input str to the file and, if an encoding error occurs and replace_errors is ``True``, remove invalid code points and print again. ''' try: file.write(data) except UnicodeEncodeError: if replace_errors: enc = getattr(file, 'encoding', sys.getdefaultencoding()) file.write(data.encode(enc, errors='replace').decode(enc)) else: raise if wrap and hasattr(file, 'width') and file.width: width = width or file.width parts = [] for arg in args: if isinstance(arg, str): parts.append(arg) elif arg is None: parts.append('') elif isinstance(arg, AnsiCode): if file.isatty(): parts.append(str(arg)) elif arg.s is not None: parts.append(str(arg.s)) else: parts.append(str(arg)) txt = sep.join(parts) for (line, endl) in get_lines(txt): if line: first = True wrapno = 0 for wrapped in wrap_line(line, width, wrap_prefix=wrap_prefix): if not wrapped: continue wrapno += 1 if not first: file.write('\n') else: first = False write_safe(wrapped) if not line or endl: file.write('\n') else: last = len(args) - 1 for (i, arg) in enumerate(args): write_safe(str(arg)) if sep and i != last: write_safe(sep) if end: write_safe(end) if flush: file.flush()
38.363057
96
0.625989
# # Copyright (c) 2015, Adam Meily <[email protected]> # Pypsi - https://github.com/ameily/pypsi # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # ''' Base classes for developing pluggable commands and plugins. ''' import argparse import sys from pypsi.ansi import AnsiCodes, AnsiCode from pypsi.format import get_lines, wrap_line class Plugin(object): ''' A plugin is an object that is able to modify a :py:class:`pypsi.shell.Shell` object's behavior. Whereas a command can be execute from user input, the `Plugin` class does not contain a `run()` function. ''' def __init__(self, preprocess=None, postprocess=None): ''' Constructor can take two parameters: `preprocess` and `postprocess` These values determine where the plugin resides inside of the preprocess and postprocess list. This list, inside of :class:`pypsi.shell.Shell`, is iterated sequentially, from most priority to least. So, the highest priority value is 0, which means it will be the first plugin to run, and the lowest value is 100, which means it will be the last plugin to run. If either value is `None`, the plugin is not added to the processing list. For example, if this plugin only provides a preprocessing functionality, then postprocess should be set to :const:`None`. :param int preprocess: the preprocess priority :param int postprocess: the postprocess priority ''' self.preprocess = preprocess self.postprocess = postprocess def setup(self, shell): # pylint: disable=unused-argument ''' Called after the plugin has been registered to the active shell. :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on failure ''' return 0 def on_input(self, shell, line): # pylint: disable=unused-argument ''' Called after input from the user has been received. The return value is the preprocessed line. This means that modifying the line argument will not populate back. If this function does no preprocessing, return line unmodified. :param pypsi.shell.Shell shell: the active shell :param str line: the current input statement string :returns str: the preprocessed line ''' return line def on_tokenize(self, shell, tokens, origin): # pylint: disable=unused-argument ''' Called after an input string has been tokenized. If this function performs no preprocessing, return the tokens unmodified. :param pypsi.shell.Shell shell: the active shell :param list tokens: the list of :class:`pypsi.cmdline.Token` objects :param str origin: the origin of the input, can be either 'input' if received from a call to `input()` or 'prompt' if the input is the prompt to display to the user :returns list: the list of preprocessed :class:`pypsi.cmdline.Token` objects ''' return tokens def on_input_canceled(self, shell): # pylint: disable=unused-argument ''' Called when the user can canceled entering a statement via SIGINT (Ctrl+C). :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on error ''' return 0 def on_statement_finished(self, shell, rc): # pylint: disable=unused-argument ''' Called when a statement has been completely executed. :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on error ''' return 0 class Command(object): ''' A pluggable command that users can execute. All commands need to derive from this class. When a command is executed by a user, the command's :meth:`run` method will be called. The return value of the :meth:`run` method is used when processing forthcoming commands in the active statement. The return value must be an :class:`int` and follows the Unix standard: 0 on success, less than 0 on error, and greater than 0 given invalid input or incorrect usage. Each command has a topic associated with it. This topic can be referenced by commands such as :class:`pypsi.commands.help.HelpCommand` to categorize commands in help messages. A command can be used as a fallback handler by implementing the :meth:`fallback` method. This is similar to the :meth:`run` method, except that is accepts one more argument: the command name to execute that wasn't found by the shell. The return value of :meth:`fallback` holds the same purpose as the return value of :meth:`run`. By the time :meth:`run` is called, the system streams have been updated to point to the current file streams issued in the statement. For example, if the statement redirects standard out (:attr:`sys.stdout`) to a file, the destination file is automatically opened and :attr:`sys.stdout` is redirected to the opened file stream. Once the command has complete execution, the redirected stream is automatically closed and :attr:`sys.stdout` is set to its original stream. ''' def __init__(self, name, usage=None, brief=None, topic=None, pipe='str'): ''' :param str name: the name of the command which the user will reference in the shell :param str usage: the usage message to be displayed to the user :param str brief: a brief description of the command :param str topic: the topic that this command belongs to :param str pipe: the type of data that will be read from and written to any pipes ''' self.name = name self.usage = usage or '' self.brief = brief or '' self.topic = topic or '' self.pipe = pipe or 'str' def complete(self, shell, args, prefix): # pylint: disable=unused-argument ''' Called when the user attempts a tab-completion action for this command. :param pypsi.shell.Shell shell: the active shell :param list args: the list of arguments, the last one containing the cursor position :param str prefix: the prefix that all items returned must start with :returns list: the list of strings that could complete the current action ''' return [] def usage_error(self, shell, *args): ''' Display an error message that indicates incorrect usage of this command. After the error is displayed, the usage is printed. :param pypsi.shell.Shell shell: the active shell :param args: list of strings that are the error message ''' self.error(shell, *args) print(AnsiCodes.yellow, self.usage, AnsiCodes.reset, sep='') def error(self, shell, *args): # pylint: disable=unused-argument ''' Display an error message to the user. :param pypsi.shell.Shell shell: the active shell :param args: the error message to display ''' msg = "{}: {}".format(self.name, ''.join([str(a) for a in args])) print(AnsiCodes.red, msg, AnsiCodes.reset, file=sys.stderr, sep='') def run(self, shell, args): ''' Execute the command. All commands need to implement this method. :param pypsi.shell.Shell shell: the active shell :param list args: list of string arguments :returns int: 0 on success, less than 0 on error, and greater than 0 on invalid usage ''' raise NotImplementedError() def setup(self, shell): # pylint: disable=unused-argument ''' Called when the plugin has been registered to the active shell. :param pypsi.shell.Shell shell: the active shell :returns int: 0 on success, -1 on error ''' return 0 def fallback(self, shell, name, args): # pylint: disable=unused-argument ''' Called when this command was set as the fallback command. The only difference between this and :meth:`run` is that this method accepts the command name that was entered by the user. :param pypsi.shell.Shell shell: the active shell :param str name: the name of the command to run :param list args: arguments :returns int: 0 on success, less than 0 on error, and greater than 0 on invalid usage ''' return None class CommandShortCircuit(Exception): ''' Exception raised when the user enter invalid arguments or requests usage information via the -h and --help flags. ''' def __init__(self, code): ''' :param int code: the code the command should return ''' super().__init__(code) self.code = code class PypsiArgParser(argparse.ArgumentParser): ''' Customized :class:`argparse.ArgumentParser` for use in pypsi. This class slightly modifies the base ArgumentParser so that the following occurs: - The whole program does not exit on printing the help message or bad arguments - Any error messages are intercepted and printed on the active shell's error stream - Adds the option to provide callbacks for tab-completing options and parameters ''' def __init__(self, *args, **kwargs): #: Store callback functions for positional parameters self._pos_completers = [] #: Store callback functions for optional arguments with values self._op_completers = {} #: If a positional argument can be specified more than once, # store it's callback here and return it multiple times self._repeating_cb = None super().__init__(*args, **kwargs) def exit(self, status=0, message=None): if message: print(AnsiCodes.red, message, AnsiCodes.reset, file=sys.stderr, sep='') raise CommandShortCircuit(status) def print_usage(self, file=None): f = file or sys.stderr print(AnsiCodes.yellow, self.format_usage(), AnsiCodes.reset, sep='', file=f) def print_help(self, file=None): f = file or sys.stderr print(AnsiCodes.yellow, self.format_help(), AnsiCodes.reset, sep='', file=f) def get_options(self): ''' :return: All optional arguments (ex, '-v'/'--verbose') ''' return list(self._op_completers.keys()) def get_option_completer(self, option): ''' Returns the callback for the specified optional argument, Or None if one was not specified. :param str option: The Option :return function: The callback function or None ''' return self._op_completers.get(option, None) def has_value(self, arg): ''' Check if the optional argument has a value associated with it. :param str arg: Optional argument to check :return: True if arg has a value, false otherwise ''' # pylint: disable=protected-access # _option_string_actions is a dictionary containing all of the optional # arguments and the argparse action they should perform. Currently, the # only two actions that store a value are _AppendAction/_StoreAction. # These represent the value passed to 'action' in add_argument: # parser.add_argument('-l', '--long', action='store') action = self._option_string_actions.get(arg, None) return isinstance(action, (argparse._AppendAction, argparse._StoreAction)) def get_positional_completer(self, pos): ''' Get the callback for a positional parameter :param pos: index of the parameter - first param's index = 0 :return: The callback if it exists, else None ''' try: return self._pos_completers[pos] except IndexError: if self._repeating_cb: # A positional parameter is set to repeat return self._repeating_cb return None def get_positional_arg_index(self, args): ''' Get the positional index of a cursor, based on optional arguments and positional arguments :param list args: List of str arguments from the Command Line :return: ''' index = 0 for token in args: if token in self._option_string_actions: # Token is an optional argument ( ex, '-v' / '--verbose' ) if self.has_value(token): # Optional Argument has a value associated with it, so # reduce index to not count it's value as a pos param index -= 1 else: # Is a positional param or value for an optional argument index += 1 # return zero-based index return index - 1 def add_argument(self, *args, completer=None, **kwargs): # pylint: disable=arguments-differ ''' Override add_argument function of argparse.ArgumentParser to handle callback functions. :param args: Positional arguments to pass up to argparse :param function completer: Optional callback function for argument :param kwargs: Keywork arguments to pass up to argparse :return: ''' cb = completer nargs = kwargs.get('nargs', None) chars = self.prefix_chars if not args or len(args) == 1 and args[0][0] not in chars: # If no positional args are supplied or only one is supplied and # it doesn't look like an option string, parse a positional # argument ( from argparse ) if nargs and nargs in ('+', '*', argparse.REMAINDER): # Positional param can repeat # Currently only stores the last repeating completer specified self._repeating_cb = cb self._pos_completers.append(cb) else: # Add an optional argument for arg in args: self._op_completers[arg] = cb # Call argparse.add_argument() return super().add_argument(*args, **kwargs) def error(self, message): print(AnsiCodes.red, self.prog, ": error: ", message, AnsiCodes.reset, sep='', file=sys.stderr) self.print_usage() self.exit(1) def pypsi_print(*args, sep=' ', end='\n', file=None, flush=True, width=None, wrap=True, wrap_prefix=None, replace_errors=True): ''' Wraps the functionality of the Python builtin `print` function. The :meth:`pypsi.shell.Shell.bootstrap` overrides the Python :meth:`print` function with :meth:`pypsi_print`. :param str sep: string to print between arguments :param str end: string to print at the end of the output :param file file: output stream, if this is :const:`None`, the default is :data:`sys.stdout` :param bool flush: whether to flush the output stream :param int width: override the stream's width :param bool wrap: whether to word wrap the output :param str wrap_prefix: prefix string to print prior to every new line that is wrapped :param bool replace_errors: replace invalid character points with the '?' character ''' file = file or sys.stdout last = len(args) - 1 def write_safe(data): ''' Write the input str to the file and, if an encoding error occurs and replace_errors is ``True``, remove invalid code points and print again. ''' try: file.write(data) except UnicodeEncodeError: if replace_errors: enc = getattr(file, 'encoding', sys.getdefaultencoding()) file.write(data.encode(enc, errors='replace').decode(enc)) else: raise if wrap and hasattr(file, 'width') and file.width: width = width or file.width parts = [] for arg in args: if isinstance(arg, str): parts.append(arg) elif arg is None: parts.append('') elif isinstance(arg, AnsiCode): if file.isatty(): parts.append(str(arg)) elif arg.s is not None: parts.append(str(arg.s)) else: parts.append(str(arg)) txt = sep.join(parts) for (line, endl) in get_lines(txt): if line: first = True wrapno = 0 for wrapped in wrap_line(line, width, wrap_prefix=wrap_prefix): if not wrapped: continue wrapno += 1 if not first: file.write('\n') else: first = False write_safe(wrapped) if not line or endl: file.write('\n') else: last = len(args) - 1 for (i, arg) in enumerate(args): write_safe(str(arg)) if sep and i != last: write_safe(sep) if end: write_safe(end) if flush: file.flush()
1,062
0
135
5050f96a5b09f087a43bfbf366927f7c8ded0262
687
py
Python
2020/6/main.py
klrkdekira/adventofcode
8384d919093712c95b707b8e3f293dbfba22be74
[ "BSD-2-Clause" ]
1
2020-12-01T08:41:55.000Z
2020-12-01T08:41:55.000Z
2020/6/main.py
klrkdekira/adventofcode
8384d919093712c95b707b8e3f293dbfba22be74
[ "BSD-2-Clause" ]
null
null
null
2020/6/main.py
klrkdekira/adventofcode
8384d919093712c95b707b8e3f293dbfba22be74
[ "BSD-2-Clause" ]
null
null
null
QUESTIONS = ['a', 'b', 'c', 'x', 'y', 'z'] if __name__ == '__main__': with open('input') as file: groups = [] group = [] for row in file: row = row.strip() if not row: groups.append(group) group = [] continue group.append(row) groups.append(group) print(sum(map(anyone, groups))) print(sum(map(everyone, groups)))
24.535714
66
0.519651
QUESTIONS = ['a', 'b', 'c', 'x', 'y', 'z'] def anyone(group): answers = [] for person in group: answers.extend(person) return len(set(answers)) def everyone(group): answers = set.intersection(*(set(person) for person in group)) return len(answers) if __name__ == '__main__': with open('input') as file: groups = [] group = [] for row in file: row = row.strip() if not row: groups.append(group) group = [] continue group.append(row) groups.append(group) print(sum(map(anyone, groups))) print(sum(map(everyone, groups)))
189
0
46
62d60dcf7dc46a76d9c2e17fa4e8e062fa646f12
9,440
py
Python
frille-lang/lib/python3.6/site-packages/pathy/gcs.py
frillecode/CDS-spring-2021-language
a0b2116044cd20d4a34b98f23bd2663256c90c5d
[ "MIT" ]
null
null
null
frille-lang/lib/python3.6/site-packages/pathy/gcs.py
frillecode/CDS-spring-2021-language
a0b2116044cd20d4a34b98f23bd2663256c90c5d
[ "MIT" ]
null
null
null
frille-lang/lib/python3.6/site-packages/pathy/gcs.py
frillecode/CDS-spring-2021-language
a0b2116044cd20d4a34b98f23bd2663256c90c5d
[ "MIT" ]
null
null
null
from dataclasses import dataclass from typing import Any, Dict, Generator, List, Optional from .base import ( Blob, Bucket, BucketClient, BucketEntry, ClientError, PathyScanDir, PurePathy, ) try: from google.api_core import exceptions as gcs_errors # type:ignore from google.auth.exceptions import DefaultCredentialsError # type:ignore from google.cloud.storage import Blob as GCSNativeBlob # type:ignore from google.cloud.storage import Bucket as GCSNativeBucket # type:ignore from google.cloud.storage import Client as GCSNativeClient # type:ignore has_gcs = True except ImportError: GCSNativeBlob = Any DefaultCredentialsError = BaseException gcs_errors = Any GCSNativeBucket = Any GCSNativeClient = Any has_gcs = False _MISSING_DEPS = """You are using the GCS functionality of Pathy without having the required dependencies installed. Please try installing them: pip install pathy[gcs] """ @dataclass @dataclass
34.327273
86
0.584322
from dataclasses import dataclass from typing import Any, Dict, Generator, List, Optional from .base import ( Blob, Bucket, BucketClient, BucketEntry, ClientError, PathyScanDir, PurePathy, ) try: from google.api_core import exceptions as gcs_errors # type:ignore from google.auth.exceptions import DefaultCredentialsError # type:ignore from google.cloud.storage import Blob as GCSNativeBlob # type:ignore from google.cloud.storage import Bucket as GCSNativeBucket # type:ignore from google.cloud.storage import Client as GCSNativeClient # type:ignore has_gcs = True except ImportError: GCSNativeBlob = Any DefaultCredentialsError = BaseException gcs_errors = Any GCSNativeBucket = Any GCSNativeClient = Any has_gcs = False _MISSING_DEPS = """You are using the GCS functionality of Pathy without having the required dependencies installed. Please try installing them: pip install pathy[gcs] """ class BucketEntryGCS(BucketEntry["BucketGCS", GCSNativeBlob]): ... @dataclass class BlobGCS(Blob[GCSNativeBucket, GCSNativeBlob]): def delete(self) -> None: self.raw.delete() def exists(self) -> bool: return self.raw.exists() @dataclass class BucketGCS(Bucket): name: str bucket: GCSNativeBucket def get_blob(self, blob_name: str) -> Optional[BlobGCS]: assert isinstance( blob_name, str ), f"expected str blob name, but found: {type(blob_name)}" native_blob = None try: native_blob = self.bucket.get_blob(blob_name) except gcs_errors.ClientError: pass if native_blob is None: return None return BlobGCS( bucket=self.bucket, owner=native_blob.owner, name=native_blob.name, raw=native_blob, size=native_blob.size, updated=int(native_blob.updated.timestamp()), ) def copy_blob( # type:ignore[override] self, blob: BlobGCS, target: "BucketGCS", name: str ) -> Optional[BlobGCS]: assert blob.raw is not None, "raw storage.Blob instance required" native_blob = self.bucket.copy_blob(blob.raw, target.bucket, name) if native_blob is None: return None return BlobGCS( bucket=self.bucket, owner=native_blob.owner, name=native_blob.name, raw=native_blob, size=native_blob.size, updated=int(native_blob.updated.timestamp()), ) def delete_blob(self, blob: BlobGCS) -> None: # type:ignore[override] return self.bucket.delete_blob(blob.name) def delete_blobs(self, blobs: List[BlobGCS]) -> None: # type:ignore[override] return self.bucket.delete_blobs(blobs) def exists(self) -> bool: try: return self.bucket.exists() except gcs_errors.ClientError: return False class BucketClientGCS(BucketClient): client: Optional[GCSNativeClient] @property def client_params(self) -> Any: return dict(client=self.client) def __init__(self, **kwargs: Any) -> None: self.recreate(**kwargs) def recreate(self, **kwargs: Any) -> None: creds = kwargs["credentials"] if "credentials" in kwargs else None if creds is not None: kwargs["project"] = creds.project_id try: self.client = GCSNativeClient(**kwargs) except TypeError: # TypeError is raised if the imports for GCSNativeClient fail and are # assigned to Any, which is not callable. self.client = None def make_uri(self, path: PurePathy) -> str: return str(path) def create_bucket(self, path: PurePathy) -> Bucket: assert self.client is not None, _MISSING_DEPS return self.client.create_bucket(path.root) def delete_bucket(self, path: PurePathy) -> None: assert self.client is not None, _MISSING_DEPS bucket = self.client.get_bucket(path.root) bucket.delete() def exists(self, path: PurePathy) -> bool: # Because we want all the parents of a valid blob (e.g. "directory" in # "directory/foo.file") to return True, we enumerate the blobs with a prefix # and compare the object names to see if they match a substring of the path key_name = str(path.key) try: for obj in self.list_blobs(path): if obj.name == key_name: return True if obj.name.startswith(key_name + path._flavour.sep): return True except gcs_errors.ClientError: return False return False def lookup_bucket(self, path: PurePathy) -> Optional[BucketGCS]: assert self.client is not None, _MISSING_DEPS try: native_bucket = self.client.bucket(path.root) if native_bucket is not None: return BucketGCS(str(path.root), bucket=native_bucket) except gcs_errors.ClientError as err: print(err) return None def get_bucket(self, path: PurePathy) -> BucketGCS: assert self.client is not None, _MISSING_DEPS try: native_bucket = self.client.bucket(path.root) if native_bucket is not None: return BucketGCS(str(path.root), bucket=native_bucket) raise FileNotFoundError(f"Bucket {path.root} does not exist!") except gcs_errors.ClientError as e: raise ClientError(message=e.message, code=e.code) def list_buckets( self, **kwargs: Dict[str, Any] ) -> Generator[GCSNativeBucket, None, None]: assert self.client is not None, _MISSING_DEPS return self.client.list_buckets(**kwargs) # type:ignore def scandir( # type:ignore[override] self, path: Optional[PurePathy] = None, prefix: Optional[str] = None, delimiter: Optional[str] = None, ) -> PathyScanDir: return _GCSScanDir(client=self, path=path, prefix=prefix, delimiter=delimiter) def list_blobs( self, path: PurePathy, prefix: Optional[str] = None, delimiter: Optional[str] = None, include_dirs: bool = False, ) -> Generator[BlobGCS, None, None]: assert self.client is not None, _MISSING_DEPS continuation_token = None bucket = self.lookup_bucket(path) if bucket is None: return while True: if continuation_token: response = self.client.list_blobs( path.root, prefix=prefix, delimiter=delimiter, page_token=continuation_token, ) else: response = self.client.list_blobs( path.root, prefix=prefix, delimiter=delimiter ) for page in response.pages: for item in page: yield BlobGCS( bucket=bucket, owner=item.owner, name=item.name, raw=item, size=item.size, updated=item.updated.timestamp(), ) if response.next_page_token is None: break continuation_token = response.next_page_token class _GCSScanDir(PathyScanDir): _client: BucketClientGCS def scandir(self) -> Generator[BucketEntryGCS, None, None]: assert self._client.client is not None, _MISSING_DEPS continuation_token = None if self._path is None or not self._path.root: gcs_bucket: GCSNativeBucket for gcs_bucket in self._client.client.list_buckets(): yield BucketEntryGCS(gcs_bucket.name, is_dir=True, raw=None) return sep = self._path._flavour.sep bucket = self._client.lookup_bucket(self._path) if bucket is None: return while True: if continuation_token: response = self._client.client.list_blobs( bucket.name, prefix=self._prefix, delimiter=sep, page_token=continuation_token, ) else: response = self._client.client.list_blobs( bucket.name, prefix=self._prefix, delimiter=sep ) for page in response.pages: for folder in list(page.prefixes): full_name = folder[:-1] if folder.endswith(sep) else folder name = full_name.split(sep)[-1] if name: yield BucketEntryGCS(name, is_dir=True, raw=None) for item in page: name = item.name.split(sep)[-1] if name: yield BucketEntryGCS( name=name, is_dir=False, size=item.size, last_modified=item.updated.timestamp(), raw=item, ) if response.next_page_token is None: break continuation_token = response.next_page_token
7,541
718
166
3deebfeffce2abe1ba44b1052c91bfb62a647fb4
1,750
py
Python
project/both.py
mahmoudabuelnaga/baby-names-scraping
44ded037a4c24306123c4da749e32575eee4afc6
[ "MIT" ]
null
null
null
project/both.py
mahmoudabuelnaga/baby-names-scraping
44ded037a4c24306123c4da749e32575eee4afc6
[ "MIT" ]
null
null
null
project/both.py
mahmoudabuelnaga/baby-names-scraping
44ded037a4c24306123c4da749e32575eee4afc6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from time import sleep from bs4 import BeautifulSoup import csv import requests links = [] items = [] for i in range(1,38): endpoint = f"https://baby.webteb.com/baby-names/%D8%A7%D8%B3%D9%85%D8%A7%D8%A1-%D8%A7%D9%88%D9%84%D8%A7%D8%AF-%D9%88%D8%A8%D9%86%D8%A7%D8%AA?pageindex={i}" get_response = requests.get(endpoint) # print(get_response.content) soup = BeautifulSoup(get_response.content, 'lxml') # print(soup.prettify()) section = soup.find('div', {'class':'page-section'}) for li in section.find_all('li'): links.append(li.a['href']) print(f'{i}', li.a['href']) for i, link in zip(range(1,len(links)+1), links): url = f"https://baby.webteb.com{link}" get_response = requests.get(url) soup = BeautifulSoup(get_response.content, 'lxml') content = soup.find('div', {'class':'section name'}) section1 = content.find('div', {'class':'section'}) name_detail = content.find('div', {'class':'name-details'}) section2 = name_detail.find('div', {'class':'section'}) span = section2.find('span', {'class':'latin'}) item = {} if content.h1.text: item['arabic_name'] = content.h1.text if section1.p.text: item['meaning'] = section1.p.text if span.text: item['english_name'] = span.text print(i, content.h1.text, section1.p.text, span.text) items.append(item) filename = '/home/naga/dev/babyNamesScraping/project/both.csv' with open(filename, 'w', newline='') as f: w = csv.DictWriter(f, fieldnames=['arabic_name','meaning', 'english_name'], extrasaction='ignore' , delimiter = ';') w.writeheader() print(items) for item in items: w.writerow(item) print(item)
29.166667
159
0.630857
# -*- coding: utf-8 -*- from time import sleep from bs4 import BeautifulSoup import csv import requests links = [] items = [] for i in range(1,38): endpoint = f"https://baby.webteb.com/baby-names/%D8%A7%D8%B3%D9%85%D8%A7%D8%A1-%D8%A7%D9%88%D9%84%D8%A7%D8%AF-%D9%88%D8%A8%D9%86%D8%A7%D8%AA?pageindex={i}" get_response = requests.get(endpoint) # print(get_response.content) soup = BeautifulSoup(get_response.content, 'lxml') # print(soup.prettify()) section = soup.find('div', {'class':'page-section'}) for li in section.find_all('li'): links.append(li.a['href']) print(f'{i}', li.a['href']) for i, link in zip(range(1,len(links)+1), links): url = f"https://baby.webteb.com{link}" get_response = requests.get(url) soup = BeautifulSoup(get_response.content, 'lxml') content = soup.find('div', {'class':'section name'}) section1 = content.find('div', {'class':'section'}) name_detail = content.find('div', {'class':'name-details'}) section2 = name_detail.find('div', {'class':'section'}) span = section2.find('span', {'class':'latin'}) item = {} if content.h1.text: item['arabic_name'] = content.h1.text if section1.p.text: item['meaning'] = section1.p.text if span.text: item['english_name'] = span.text print(i, content.h1.text, section1.p.text, span.text) items.append(item) filename = '/home/naga/dev/babyNamesScraping/project/both.csv' with open(filename, 'w', newline='') as f: w = csv.DictWriter(f, fieldnames=['arabic_name','meaning', 'english_name'], extrasaction='ignore' , delimiter = ';') w.writeheader() print(items) for item in items: w.writerow(item) print(item)
0
0
0
bb2ad701ba189d46d6b8954c67ceae977de8da75
4,318
py
Python
sde/solvers.py
d-l-fernandes/ito_general
8a9889fa13e5893e923c8d32fd1c94d22aec84d9
[ "MIT" ]
null
null
null
sde/solvers.py
d-l-fernandes/ito_general
8a9889fa13e5893e923c8d32fd1c94d22aec84d9
[ "MIT" ]
null
null
null
sde/solvers.py
d-l-fernandes/ito_general
8a9889fa13e5893e923c8d32fd1c94d22aec84d9
[ "MIT" ]
null
null
null
from typing import Tuple import haiku as hk import jax.numpy as jnp import numpyro from absl import flags from numpyro.distributions.continuous import MultivariateNormal from sde import drifts, diffusions Array = jnp.ndarray flags.DEFINE_enum("solver", "strong_3_halfs", ["euler_maruyama", "strong_3_halfs"], "Solver to use.") FLAGS = flags.FLAGS solvers_dict = { "euler_maruyama": EulerMaruyamaSolver, "strong_3_halfs": Strong3HalfsSolver }
40.35514
117
0.619268
from typing import Tuple import haiku as hk import jax.numpy as jnp import numpyro from absl import flags from numpyro.distributions.continuous import MultivariateNormal from sde import drifts, diffusions Array = jnp.ndarray flags.DEFINE_enum("solver", "strong_3_halfs", ["euler_maruyama", "strong_3_halfs"], "Solver to use.") FLAGS = flags.FLAGS class BaseSolver: def __init__(self, delta_t: float, beta_dims: int, drift: drifts.BaseDrift, diffusion: diffusions.BaseDiffusion): self.delta_t = delta_t self.beta_dims = beta_dims self.drift = drift self.diffusion = diffusion def __call__(self, x_0: Array, time: float) -> Array: raise NotImplementedError class EulerMaruyamaSolver(BaseSolver): def __init__(self, delta_t: float, beta_dims: int, drift: drifts.BaseDrift, diffusion: diffusions.BaseDiffusion): super().__init__(delta_t, beta_dims, drift, diffusion) def __call__(self, x_0: Array, time: float) -> Array: rng_beta = hk.next_rng_key() delta_beta = numpyro.sample("delta_beta", MultivariateNormal( loc=jnp.zeros(self.beta_dims), scale_tril=jnp.sqrt(self.delta_t) * jnp.eye(self.beta_dims)), rng_key=rng_beta) drift = self.drift(x_0, time) diff = self.diffusion(x_0, time) x_1 = x_0 + drift * self.delta_t + jnp.matmul(diff, delta_beta) return x_1 class Strong3HalfsSolver(BaseSolver): def __init__(self, delta_t: float, beta_dims: int, drift: drifts.BaseDrift, diffusion: diffusions.BaseDiffusion): super().__init__(delta_t, beta_dims, drift, diffusion) def __call__(self, x_0: Array, time: float) -> Array: rng_beta = hk.next_rng_key() # Vector of zeros beta_mean_vector = jnp.zeros((self.beta_dims*2, )) # Covariance matrix for the betas and gammas beta_covariance_top_left = self.delta_t ** 3 / 3 * jnp.eye(self.beta_dims) beta_covariance_top_right = self.delta_t ** 2 / 2 * jnp.eye(self.beta_dims) beta_covariance_bottom_right = self.delta_t * jnp.eye(self.beta_dims) beta_covariance_top = jnp.concatenate((beta_covariance_top_left, beta_covariance_top_right), axis=1) beta_covariance_bottom = jnp.concatenate((beta_covariance_top_right, beta_covariance_bottom_right), axis=1) beta_covariance = jnp.concatenate((beta_covariance_top, beta_covariance_bottom), axis=0) delta_gamma_beta = numpyro.sample("delta_gamma_beta", MultivariateNormal(loc=beta_mean_vector, covariance_matrix=beta_covariance), rng_key=rng_beta) delta_gamma = delta_gamma_beta[:self.beta_dims] delta_beta = delta_gamma_beta[self.beta_dims:] drift_0 = self.drift(x_0, time) diff = self.diffusion(x_0, time) diff_plus = self.diffusion(x_0, time + self.delta_t) init_x_1 = x_0 + drift_0 * self.delta_t + jnp.matmul(diff, delta_beta) init_x_1 += 1. / self.delta_t * jnp.matmul(diff_plus - diff, delta_beta * self.delta_t - delta_gamma) def scan_fn(carry, s): x_1 = carry x_0_plus = \ x_0 + drift_0 * self.delta_t / self.beta_dims + \ diff[:, s] * jnp.sqrt(self.delta_t) x_0_minus = \ x_0 + drift_0 * self.delta_t / self.beta_dims - \ diff[:, s] * jnp.sqrt(self.delta_t) drift_0_plus = self.drift(x_0_plus, time + self.delta_t) drift_0_minus = self.drift(x_0_minus, time + self.delta_t) x_1 += 0.25 * self.delta_t * (drift_0_plus + drift_0_minus) x_1 -= 0.5 * drift_0 * self.delta_t x_1 += \ 1. / (2 * jnp.sqrt(self.delta_t)) * (drift_0_plus - drift_0_minus) * delta_gamma[s] return x_1, None final_x_1, _ = hk.scan(scan_fn, init_x_1, jnp.arange(self.beta_dims)) return final_x_1 solvers_dict = { "euler_maruyama": EulerMaruyamaSolver, "strong_3_halfs": Strong3HalfsSolver }
3,602
29
228
79cfe256477332ba59823cac9001633a38f29bc4
5,767
py
Python
pysnmp/JUNIPER-SONET-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/JUNIPER-SONET-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/JUNIPER-SONET-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module JUNIPER-SONET-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/JUNIPER-SONET-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:50:16 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, SingleValueConstraint, ConstraintsUnion, ConstraintsIntersection, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueSizeConstraint") ifIndex, ifDescr = mibBuilder.importSymbols("IF-MIB", "ifIndex", "ifDescr") jnxMibs, jnxSonetNotifications = mibBuilder.importSymbols("JUNIPER-SMI", "jnxMibs", "jnxSonetNotifications") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") MibIdentifier, Gauge32, iso, ObjectIdentity, TimeTicks, ModuleIdentity, Integer32, Counter32, Unsigned32, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, Counter64, IpAddress, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "MibIdentifier", "Gauge32", "iso", "ObjectIdentity", "TimeTicks", "ModuleIdentity", "Integer32", "Counter32", "Unsigned32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "Counter64", "IpAddress", "Bits") DisplayString, DateAndTime, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "DateAndTime", "TextualConvention") jnxSonet = ModuleIdentity((1, 3, 6, 1, 4, 1, 2636, 3, 20)) jnxSonet.setRevisions(('2002-12-12 00:00', '2002-08-08 00:00',)) if mibBuilder.loadTexts: jnxSonet.setLastUpdated('200307182154Z') if mibBuilder.loadTexts: jnxSonet.setOrganization('Juniper Networks, Inc.') jnxSonetAlarms = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1)) jnxSonetAlarmTable = MibTable((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1), ) if mibBuilder.loadTexts: jnxSonetAlarmTable.setStatus('current') jnxSonetAlarmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: jnxSonetAlarmEntry.setStatus('current') jnxSonetCurrentAlarms = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 1), JnxSonetAlarmId()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetCurrentAlarms.setStatus('current') jnxSonetLastAlarmId = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 2), JnxSonetAlarmId()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmId.setStatus('current') jnxSonetLastAlarmTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 3), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmTime.setStatus('current') jnxSonetLastAlarmDate = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 4), DateAndTime()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmDate.setStatus('current') jnxSonetLastAlarmEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("none", 1), ("set", 2), ("cleared", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmEvent.setStatus('current') jnxSonetNotificationPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 4, 6, 0)) jnxSonetAlarmSet = NotificationType((1, 3, 6, 1, 4, 1, 2636, 4, 6, 0, 1)).setObjects(("IF-MIB", "ifDescr"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmId"), ("JUNIPER-SONET-MIB", "jnxSonetCurrentAlarms"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmDate")) if mibBuilder.loadTexts: jnxSonetAlarmSet.setStatus('current') jnxSonetAlarmCleared = NotificationType((1, 3, 6, 1, 4, 1, 2636, 4, 6, 0, 2)).setObjects(("IF-MIB", "ifDescr"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmId"), ("JUNIPER-SONET-MIB", "jnxSonetCurrentAlarms"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmDate")) if mibBuilder.loadTexts: jnxSonetAlarmCleared.setStatus('current') mibBuilder.exportSymbols("JUNIPER-SONET-MIB", jnxSonetAlarms=jnxSonetAlarms, jnxSonetCurrentAlarms=jnxSonetCurrentAlarms, jnxSonetLastAlarmTime=jnxSonetLastAlarmTime, jnxSonetAlarmTable=jnxSonetAlarmTable, JnxSonetAlarmId=JnxSonetAlarmId, jnxSonetLastAlarmEvent=jnxSonetLastAlarmEvent, jnxSonetAlarmSet=jnxSonetAlarmSet, PYSNMP_MODULE_ID=jnxSonet, jnxSonetNotificationPrefix=jnxSonetNotificationPrefix, jnxSonetAlarmCleared=jnxSonetAlarmCleared, jnxSonetAlarmEntry=jnxSonetAlarmEntry, jnxSonet=jnxSonet, jnxSonetLastAlarmId=jnxSonetLastAlarmId, jnxSonetLastAlarmDate=jnxSonetLastAlarmDate)
128.155556
904
0.752211
# # PySNMP MIB module JUNIPER-SONET-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/JUNIPER-SONET-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:50:16 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, SingleValueConstraint, ConstraintsUnion, ConstraintsIntersection, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueSizeConstraint") ifIndex, ifDescr = mibBuilder.importSymbols("IF-MIB", "ifIndex", "ifDescr") jnxMibs, jnxSonetNotifications = mibBuilder.importSymbols("JUNIPER-SMI", "jnxMibs", "jnxSonetNotifications") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") MibIdentifier, Gauge32, iso, ObjectIdentity, TimeTicks, ModuleIdentity, Integer32, Counter32, Unsigned32, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, Counter64, IpAddress, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "MibIdentifier", "Gauge32", "iso", "ObjectIdentity", "TimeTicks", "ModuleIdentity", "Integer32", "Counter32", "Unsigned32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "Counter64", "IpAddress", "Bits") DisplayString, DateAndTime, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "DateAndTime", "TextualConvention") jnxSonet = ModuleIdentity((1, 3, 6, 1, 4, 1, 2636, 3, 20)) jnxSonet.setRevisions(('2002-12-12 00:00', '2002-08-08 00:00',)) if mibBuilder.loadTexts: jnxSonet.setLastUpdated('200307182154Z') if mibBuilder.loadTexts: jnxSonet.setOrganization('Juniper Networks, Inc.') class JnxSonetAlarmId(TextualConvention, Bits): status = 'current' namedValues = NamedValues(("sonetLolAlarm", 0), ("sonetPllAlarm", 1), ("sonetLofAlarm", 2), ("sonetLosAlarm", 3), ("sonetSefAlarm", 4), ("sonetLaisAlarm", 5), ("sonetPaisAlarm", 6), ("sonetLopAlarm", 7), ("sonetBerrSdAlarm", 8), ("sonetBerrSfAlarm", 9), ("sonetLrdiAlarm", 10), ("sonetPrdiAlarm", 11), ("sonetReiAlarm", 12), ("sonetUneqAlarm", 13), ("sonetPmisAlarm", 14), ("sonetLocAlarm", 15), ("sonetVaisAlarm", 16), ("sonetVlopAlarm", 17), ("sonetVrdiAlarm", 18), ("sonetVuneqAlarm", 19), ("sonetVmisAlarm", 20), ("sonetVlocAlarm", 21), ("sdhLolAlarm", 22), ("sdhPllAlarm", 23), ("sdhLofAlarm", 24), ("sdhLosAlarm", 25), ("sdhOofAlarm", 26), ("sdhMsAisAlarm", 27), ("sdhHpAisAlarm", 28), ("sdhLopAlarm", 29), ("sdhBerrSdAlarm", 30), ("sdhBerrSfAlarm", 31), ("sdhMsFerfAlarm", 32), ("sdhHpFerfAlarm", 33), ("sdhMsFebeAlarm", 34), ("sdhHpUneqAlarm", 35), ("sdhHpMisAlarm", 36), ("sdhLocAlarm", 37)) jnxSonetAlarms = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1)) jnxSonetAlarmTable = MibTable((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1), ) if mibBuilder.loadTexts: jnxSonetAlarmTable.setStatus('current') jnxSonetAlarmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: jnxSonetAlarmEntry.setStatus('current') jnxSonetCurrentAlarms = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 1), JnxSonetAlarmId()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetCurrentAlarms.setStatus('current') jnxSonetLastAlarmId = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 2), JnxSonetAlarmId()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmId.setStatus('current') jnxSonetLastAlarmTime = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 3), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmTime.setStatus('current') jnxSonetLastAlarmDate = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 4), DateAndTime()).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmDate.setStatus('current') jnxSonetLastAlarmEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 2636, 3, 20, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("none", 1), ("set", 2), ("cleared", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: jnxSonetLastAlarmEvent.setStatus('current') jnxSonetNotificationPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 4, 6, 0)) jnxSonetAlarmSet = NotificationType((1, 3, 6, 1, 4, 1, 2636, 4, 6, 0, 1)).setObjects(("IF-MIB", "ifDescr"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmId"), ("JUNIPER-SONET-MIB", "jnxSonetCurrentAlarms"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmDate")) if mibBuilder.loadTexts: jnxSonetAlarmSet.setStatus('current') jnxSonetAlarmCleared = NotificationType((1, 3, 6, 1, 4, 1, 2636, 4, 6, 0, 2)).setObjects(("IF-MIB", "ifDescr"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmId"), ("JUNIPER-SONET-MIB", "jnxSonetCurrentAlarms"), ("JUNIPER-SONET-MIB", "jnxSonetLastAlarmDate")) if mibBuilder.loadTexts: jnxSonetAlarmCleared.setStatus('current') mibBuilder.exportSymbols("JUNIPER-SONET-MIB", jnxSonetAlarms=jnxSonetAlarms, jnxSonetCurrentAlarms=jnxSonetCurrentAlarms, jnxSonetLastAlarmTime=jnxSonetLastAlarmTime, jnxSonetAlarmTable=jnxSonetAlarmTable, JnxSonetAlarmId=JnxSonetAlarmId, jnxSonetLastAlarmEvent=jnxSonetLastAlarmEvent, jnxSonetAlarmSet=jnxSonetAlarmSet, PYSNMP_MODULE_ID=jnxSonet, jnxSonetNotificationPrefix=jnxSonetNotificationPrefix, jnxSonetAlarmCleared=jnxSonetAlarmCleared, jnxSonetAlarmEntry=jnxSonetAlarmEntry, jnxSonet=jnxSonet, jnxSonetLastAlarmId=jnxSonetLastAlarmId, jnxSonetLastAlarmDate=jnxSonetLastAlarmDate)
0
954
22
53e52201c1934896690b7be806684fdec6283cd9
4,864
py
Python
test/test_client_ip.py
leeyangjie/unit
02f50533c4a476b91e4b39a7a2d052095d970983
[ "Apache-2.0" ]
null
null
null
test/test_client_ip.py
leeyangjie/unit
02f50533c4a476b91e4b39a7a2d052095d970983
[ "Apache-2.0" ]
null
null
null
test/test_client_ip.py
leeyangjie/unit
02f50533c4a476b91e4b39a7a2d052095d970983
[ "Apache-2.0" ]
null
null
null
from unit.applications.lang.python import TestApplicationPython
35.246377
77
0.476563
from unit.applications.lang.python import TestApplicationPython class TestClientIP(TestApplicationPython): prerequisites = {'modules': {'python': 'any'}} def client_ip(self, options): assert 'success' in self.conf( { "127.0.0.1:7081": { "client_ip": options, "pass": "applications/client_ip", }, "[::1]:7082": { "client_ip": options, "pass": "applications/client_ip", }, }, 'listeners', ), 'listeners configure' def get_xff(self, xff, sock_type='ipv4'): port = 7081 if sock_type == 'ipv4' else 7082 return self.get( sock_type=sock_type, port=port, headers={'Connection': 'close', 'X-Forwarded-For': xff}, )['body'] def setup_method(self): self.load('client_ip') def test_settings_client_ip_single_ip(self): self.client_ip( {'header': 'X-Forwarded-For', 'source': '123.123.123.123'} ) assert self.get(port=7081)['body'] == '127.0.0.1', 'ipv4 default' assert ( self.get(sock_type='ipv6', port=7082)['body'] == '::1' ), 'ipv6 default' assert self.get_xff('1.1.1.1') == '127.0.0.1', 'bad source' assert self.get_xff('blah') == '127.0.0.1', 'bad header' assert self.get_xff('1.1.1.1', 'ipv6') == '::1', 'bad source ipv6' self.client_ip({'header': 'X-Forwarded-For', 'source': '127.0.0.1'}) assert self.get(port=7081)['body'] == '127.0.0.1', 'ipv4 default 2' assert ( self.get(sock_type='ipv6', port=7082)['body'] == '::1' ), 'ipv6 default 2' assert self.get_xff('1.1.1.1') == '1.1.1.1', 'replace' assert self.get_xff('blah') == '127.0.0.1', 'bad header 2' assert self.get_xff('1.1.1.1', 'ipv6') == '::1', 'bad source ipv6 2' self.client_ip({'header': 'X-Forwarded-For', 'source': '!127.0.0.1'}) assert self.get_xff('1.1.1.1') == '127.0.0.1', 'bad source 3' assert self.get_xff('1.1.1.1', 'ipv6') == '1.1.1.1', 'replace 2' def test_settings_client_ip_ipv4(self): self.client_ip({'header': 'X-Forwarded-For', 'source': '127.0.0.1'}) assert ( self.get_xff('8.8.8.8, 84.23.23.11') == '84.23.23.11' ), 'xff replace' assert ( self.get_xff('8.8.8.8, 84.23.23.11, 127.0.0.1') == '127.0.0.1' ), 'xff replace 2' assert ( self.get_xff(['8.8.8.8', '127.0.0.1, 10.0.1.1']) == '10.0.1.1' ), 'xff replace multi' def test_settings_client_ip_ipv6(self): self.client_ip({'header': 'X-Forwarded-For', 'source': '::1'}) assert self.get_xff('1.1.1.1') == '127.0.0.1', 'bad source ipv4' for ip in [ 'f607:7403:1e4b:6c66:33b2:843f:2517:da27', '2001:db8:3c4d:15::1a2f:1a2b', '2001::3c4d:15:1a2f:1a2b', '::11.22.33.44', ]: assert self.get_xff(ip, 'ipv6') == ip, 'replace' def test_settings_client_ip_recursive(self): self.client_ip( { 'header': 'X-Forwarded-For', 'recursive': True, 'source': ['127.0.0.1', '10.50.0.17', '10.5.2.1'], } ) assert self.get_xff('1.1.1.1') == '1.1.1.1', 'xff chain' assert self.get_xff('1.1.1.1, 10.5.2.1') == '1.1.1.1', 'xff chain 2' assert ( self.get_xff('8.8.8.8, 1.1.1.1, 10.5.2.1') == '1.1.1.1' ), 'xff chain 3' assert ( self.get_xff('10.50.0.17, 10.5.2.1, 10.5.2.1') == '10.50.0.17' ), 'xff chain 4' assert ( self.get_xff(['8.8.8.8', '1.1.1.1, 127.0.0.1']) == '1.1.1.1' ), 'xff replace multi' assert ( self.get_xff(['8.8.8.8', '1.1.1.1, 127.0.0.1', '10.5.2.1']) == '1.1.1.1' ), 'xff replace multi 2' assert ( self.get_xff(['10.5.2.1', '10.50.0.17, 1.1.1.1', '10.5.2.1']) == '1.1.1.1' ), 'xff replace multi 3' assert ( self.get_xff('8.8.8.8, 2001:db8:3c4d:15::1a2f:1a2b, 127.0.0.1') == '2001:db8:3c4d:15::1a2f:1a2b' ), 'xff chain ipv6' def test_settings_client_ip_invalid(self): assert 'error' in self.conf( { "http": { "client_ip": {'header': 'X-Forwarded-For', 'source': []} } }, 'settings', ), 'empty array source' assert 'error' in self.conf( { "http": { "client_ip": {'header': 'X-Forwarded-For', 'source': 'a'} } }, 'settings', ), 'empty source invalid'
4,488
288
23
74a36f9de503409718965b9b6bc829fa35d95202
190
py
Python
dev.py
LCBRU/batch_demographics
e516e958091fd74dad00b1705431ac030e3c4503
[ "MIT" ]
null
null
null
dev.py
LCBRU/batch_demographics
e516e958091fd74dad00b1705431ac030e3c4503
[ "MIT" ]
null
null
null
dev.py
LCBRU/batch_demographics
e516e958091fd74dad00b1705431ac030e3c4503
[ "MIT" ]
null
null
null
#!/usr/bin/env python from batch_demographics import create_app from config import DevConfig app = create_app(DevConfig()) if __name__ == "__main__": app.run(host="0.0.0.0", port=8000)
23.75
41
0.736842
#!/usr/bin/env python from batch_demographics import create_app from config import DevConfig app = create_app(DevConfig()) if __name__ == "__main__": app.run(host="0.0.0.0", port=8000)
0
0
0
dc71d49cfcda3d4e87c6a2b9fa01e89c155ee69a
151
py
Python
widgetProject/widgetApp/admin.py
cs-fullstack-2019-spring/django-fields-widgets-cw-rsalcido
4b19595867ee38396d0a80bfa0adcd0cb9811d23
[ "Apache-2.0" ]
null
null
null
widgetProject/widgetApp/admin.py
cs-fullstack-2019-spring/django-fields-widgets-cw-rsalcido
4b19595867ee38396d0a80bfa0adcd0cb9811d23
[ "Apache-2.0" ]
null
null
null
widgetProject/widgetApp/admin.py
cs-fullstack-2019-spring/django-fields-widgets-cw-rsalcido
4b19595867ee38396d0a80bfa0adcd0cb9811d23
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import supeHero # Register your models here. admin.site.register(supeHero) # Register your models here.
21.571429
32
0.801325
from django.contrib import admin from .models import supeHero # Register your models here. admin.site.register(supeHero) # Register your models here.
0
0
0
0430b1b3554d1367b14b734250b34ede8b260068
337
py
Python
main.py
pooyapooya/rizpardazande
818721a3daac1385daf71ac508ad00bf153cbf0b
[ "MIT" ]
null
null
null
main.py
pooyapooya/rizpardazande
818721a3daac1385daf71ac508ad00bf153cbf0b
[ "MIT" ]
null
null
null
main.py
pooyapooya/rizpardazande
818721a3daac1385daf71ac508ad00bf153cbf0b
[ "MIT" ]
null
null
null
from easygui.boxes.choice_box import choicebox from easygui.boxes.text_box import textbox from phase1 import phase1 from phase2 import phase2 __author__ = 'po0ya' choices = [ 'Phase1', 'Phase2' ] choice = choicebox(msg='Please select project phase:', choices=choices) if choice == choices[0]: phase1() else: phase2()
17.736842
71
0.724036
from easygui.boxes.choice_box import choicebox from easygui.boxes.text_box import textbox from phase1 import phase1 from phase2 import phase2 __author__ = 'po0ya' choices = [ 'Phase1', 'Phase2' ] choice = choicebox(msg='Please select project phase:', choices=choices) if choice == choices[0]: phase1() else: phase2()
0
0
0
4471ff0d57c1cc3ec8a60aec1f93edea9763dd0c
2,984
py
Python
saws/data_util.py
Pangeam/saws
5aba511e72bf5feb35eb44be82fbdf805dfe3553
[ "Apache-2.0" ]
5,358
2015-09-18T19:16:11.000Z
2022-03-31T20:40:51.000Z
saws/data_util.py
Pangeam/saws
5aba511e72bf5feb35eb44be82fbdf805dfe3553
[ "Apache-2.0" ]
112
2015-09-10T10:53:57.000Z
2022-03-03T09:32:29.000Z
saws/data_util.py
Pangeam/saws
5aba511e72bf5feb35eb44be82fbdf805dfe3553
[ "Apache-2.0" ]
333
2015-09-18T19:16:13.000Z
2022-03-06T17:27:54.000Z
# -*- coding: utf-8 -*- # Copyright 2015 Donne Martin. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import unicode_literals from __future__ import print_function import re try: from collections import OrderedDict except: from ordereddict import OrderedDict class DataUtil(object): """Utility class to read from the data folder. Attributes: * None. """ def create_header_to_type_map(self, headers, data_type): """Creates a dict mapping headers to ResourceTypes. Headers are the resource headers as they appear in the RESOURCES.txt. Headers are mapped to their corresponding ResourceType. Args: * headers: A string that represents the header. * data_type: An Enum specifying the data type. Returns: An OrderedDict mapping headers to ResourceTypes. """ command_types = [] for item in data_type: if item != data_type.NUM_TYPES: command_types.append(item) return OrderedDict(zip(headers, command_types)) def get_data(self, data_file_path, header_to_type_map, data_type): """Gets all data from the specified data file. Args: * data_file_path: A string representing the full file path of the data file. * header_to_type_map: A dictionary mapping the data header labels to the data types. * data_type: An Enum specifying the data type. Returns: A list, where each element is a list of completions for each data_type """ data_lists = [[] for x in range(data_type.NUM_TYPES.value)] with open(data_file_path) as f: for line in f: line = re.sub('\n', '', line) parsing_header = False # Check if we are reading in a data header to determine # which set of data we are parsing for key, value in header_to_type_map.items(): if key in line: data_type = value parsing_header = True break if not parsing_header: # Store the data in its associated list if line.strip() != '': data_lists[data_type.value].append(line) for data_list in data_lists: data_list.sort() return data_lists
35.52381
77
0.610925
# -*- coding: utf-8 -*- # Copyright 2015 Donne Martin. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import unicode_literals from __future__ import print_function import re try: from collections import OrderedDict except: from ordereddict import OrderedDict class DataUtil(object): """Utility class to read from the data folder. Attributes: * None. """ def create_header_to_type_map(self, headers, data_type): """Creates a dict mapping headers to ResourceTypes. Headers are the resource headers as they appear in the RESOURCES.txt. Headers are mapped to their corresponding ResourceType. Args: * headers: A string that represents the header. * data_type: An Enum specifying the data type. Returns: An OrderedDict mapping headers to ResourceTypes. """ command_types = [] for item in data_type: if item != data_type.NUM_TYPES: command_types.append(item) return OrderedDict(zip(headers, command_types)) def get_data(self, data_file_path, header_to_type_map, data_type): """Gets all data from the specified data file. Args: * data_file_path: A string representing the full file path of the data file. * header_to_type_map: A dictionary mapping the data header labels to the data types. * data_type: An Enum specifying the data type. Returns: A list, where each element is a list of completions for each data_type """ data_lists = [[] for x in range(data_type.NUM_TYPES.value)] with open(data_file_path) as f: for line in f: line = re.sub('\n', '', line) parsing_header = False # Check if we are reading in a data header to determine # which set of data we are parsing for key, value in header_to_type_map.items(): if key in line: data_type = value parsing_header = True break if not parsing_header: # Store the data in its associated list if line.strip() != '': data_lists[data_type.value].append(line) for data_list in data_lists: data_list.sort() return data_lists
0
0
0
98ef697ccd1d0ce81f3545bc903eb1ff39fa24a2
701
py
Python
onlinecourse/migrations/0003_homeworkanswer.py
Moneto3o/Course-Mangement-System
2b2a8548e08fd6f3185ad23559eae841881326cf
[ "Apache-2.0" ]
null
null
null
onlinecourse/migrations/0003_homeworkanswer.py
Moneto3o/Course-Mangement-System
2b2a8548e08fd6f3185ad23559eae841881326cf
[ "Apache-2.0" ]
null
null
null
onlinecourse/migrations/0003_homeworkanswer.py
Moneto3o/Course-Mangement-System
2b2a8548e08fd6f3185ad23559eae841881326cf
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.1.3 on 2021-06-23 02:36 from django.db import migrations, models import django.db.models.deletion
30.478261
121
0.626248
# Generated by Django 3.1.3 on 2021-06-23 02:36 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('onlinecourse', '0002_auto_20210623_0941'), ] operations = [ migrations.CreateModel( name='Homeworkanswer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choices', models.ManyToManyField(to='onlinecourse.Choice')), ('homework', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='onlinecourse.homework')), ], ), ]
0
554
23
371df930ffaa78a55012c519e4c329c1f8f97c56
1,166
py
Python
leetcode/33_Search_in_Rotated_Sorted_Array.py
PhillipLeeHub/algorithm-and-data-structure
c0c27fee1b4fd634084da0b41395a26307d76e69
[ "MIT" ]
1
2020-05-01T21:29:17.000Z
2020-05-01T21:29:17.000Z
leetcode/33_Search_in_Rotated_Sorted_Array.py
PhillipLeeHub/algorithm-and-data-structure
c0c27fee1b4fd634084da0b41395a26307d76e69
[ "MIT" ]
null
null
null
leetcode/33_Search_in_Rotated_Sorted_Array.py
PhillipLeeHub/algorithm-and-data-structure
c0c27fee1b4fd634084da0b41395a26307d76e69
[ "MIT" ]
1
2020-06-12T23:32:14.000Z
2020-06-12T23:32:14.000Z
''' 33. Search in Rotated Sorted Array Medium Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]). You are given a target value to search. If found in the array return its index, otherwise return -1. You may assume no duplicate exists in the array. Your algorithm's runtime complexity must be in the order of O(log n). Example 1: Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4 Example 2: Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1 '''
27.116279
100
0.511149
''' 33. Search in Rotated Sorted Array Medium Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]). You are given a target value to search. If found in the array return its index, otherwise return -1. You may assume no duplicate exists in the array. Your algorithm's runtime complexity must be in the order of O(log n). Example 1: Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4 Example 2: Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1 ''' class Solution: def search(self, nums: List[int], target: int) -> int: l, r = 0, len(nums)-1 while l <= r: mid = l + (r-l)//2 if nums[mid] == target: return mid # Check if pivot applies if nums[l] <= nums[mid]: if nums[l] <= target < nums[mid]: r = mid - 1 else: l = mid + 1 else: if nums[mid] < target <= nums[r]: l = mid + 1 else: r = mid - 1 return -1
570
-6
48
dc96d3db43b70b02ef24b2ea06e3b4ff9e9d80ce
1,331
py
Python
glashammer/bundles/contrib/auth/openidauth.py
passy/glashammer-rdrei
9e56952d70b961d8945707469aad9cfe97c4e7b7
[ "MIT" ]
1
2016-07-04T15:23:59.000Z
2016-07-04T15:23:59.000Z
glashammer/bundles/contrib/auth/openidauth.py
passy/glashammer-rdrei
9e56952d70b961d8945707469aad9cfe97c4e7b7
[ "MIT" ]
null
null
null
glashammer/bundles/contrib/auth/openidauth.py
passy/glashammer-rdrei
9e56952d70b961d8945707469aad9cfe97c4e7b7
[ "MIT" ]
null
null
null
""" glashammer.bundles.contrib.auth.openidauth ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Open ID Support for Glashammer :copyright: 2010 Glashammer Developers :license: MIT """ from openid.consumer.consumer import Consumer, SUCCESS, CANCEL from werkzeug import redirect from glashammer.utils import sibpath, url_for, Response from glashammer.bundles.sessions import setup_sessions, get_session from glashammer.bundles.auth import setup_auth, login
28.319149
71
0.661908
""" glashammer.bundles.contrib.auth.openidauth ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Open ID Support for Glashammer :copyright: 2010 Glashammer Developers :license: MIT """ from openid.consumer.consumer import Consumer, SUCCESS, CANCEL from werkzeug import redirect from glashammer.utils import sibpath, url_for, Response from glashammer.bundles.sessions import setup_sessions, get_session from glashammer.bundles.auth import setup_auth, login def login_view(req): session = get_session() consumer = Consumer(session, None) url_back = url_for('openid/login', _external=True) if req.method == 'POST': url = req.form.get('openid') authreq = consumer.begin(url) return redirect(authreq.redirectURL(url_back, url_back)) else: res = consumer.complete(req.args, url_back) if res.status == SUCCESS: identity = req.args.get('openid.identity') login(identity) return Response('Successfully logged in as: %s' % identity) elif res.status == CANCEL: return Response('Cancelled') else: return Response('Nope') print res == SUCCESS def setup_openid(app): app.add_setup(setup_sessions) app.add_setup(setup_auth) app.add_url('/openid/login', 'openid/login', view=login_view)
828
0
46
8f558f6a46b75c6d332a9f4e5b2539ae3d50b5f6
2,544
py
Python
baseline_preprocess.py
shiningliang/DIMM
adc9ff2bea0921cffe91989a1adc95184d81e6a5
[ "Apache-2.0" ]
1
2021-03-01T12:28:26.000Z
2021-03-01T12:28:26.000Z
baseline_preprocess.py
shiningliang/DIMM
adc9ff2bea0921cffe91989a1adc95184d81e6a5
[ "Apache-2.0" ]
null
null
null
baseline_preprocess.py
shiningliang/DIMM
adc9ff2bea0921cffe91989a1adc95184d81e6a5
[ "Apache-2.0" ]
1
2020-11-07T16:11:00.000Z
2020-11-07T16:11:00.000Z
import pandas as pd import numpy as np import os import pickle as pkl import json from tqdm import tqdm single_task = ['5849', '25000', '41401', '4019'] for task in single_task: path = 'data/preprocessed_data/baseline/' + task if not os.path.exists(path): os.makedirs(path) train_data, dim = preprocess_data('data/raw_data/' + task + '/train', task) save(train_data, 'data/preprocessed_data/baseline/' + task, 'train') test_data, dim = preprocess_data('data/raw_data/' + task + '/test', task) save(test_data, 'data/preprocessed_data/baseline/' + task, 'test')
34.378378
91
0.605739
import pandas as pd import numpy as np import os import pickle as pkl import json from tqdm import tqdm def convert_samples(samples): print('Converting samples...') indexes = samples[0]['index'] labels = [samples[0]['label']] * len(indexes) del samples[0] for sample in tqdm(samples): # indexes = np.vstack((indexes, sample['index'])) indexes = np.concatenate((indexes, sample['index']), axis=0) labels += [sample['label']] * len(sample['index']) labels = np.asarray(labels) return indexes, labels def preprocess_data(data_path, task_type): samples = [] labels = [] total = 0 print('Reading raw files for {}...'.format(task_type)) for file in tqdm(os.listdir(data_path)): total += 1 if file.startswith('0'): dead = 0 else: dead = 1 raw_sample = pd.read_csv(os.path.join(data_path, file), sep=',') raw_sample = raw_sample.fillna(0) medicine = raw_sample.iloc[:, 209:].as_matrix() index = raw_sample.iloc[:, 3:208].as_matrix() index = np.concatenate((index, medicine), axis=1) index = index.tolist() samples += index labels += [dead] * len(index) # sample = {'patient_id': total, # 'index': index, # 'label': dead, # 'name': file} # samples.append(sample) # train_samples, test_samples = train_test_split(samples, test_size=0.2) # dim = samples[0]['index'].shape[1] dim = len(samples[0]) # del samples # indexes, labels = convert_samples(samples) print('Num of samples : ', len(samples)) return [np.asarray(samples, dtype=np.float32), np.asarray(labels, dtype=np.int32)], dim def save(data, path, data_type): print('Saving {} data...'.format(data_type)) np.save(os.path.join(path, data_type + '_x.npy'), data[0]) np.save(os.path.join(path, data_type + '_y.npy'), data[1]) # with open(file_name, 'w') as f: # json.dump(data, f) # f.close() single_task = ['5849', '25000', '41401', '4019'] for task in single_task: path = 'data/preprocessed_data/baseline/' + task if not os.path.exists(path): os.makedirs(path) train_data, dim = preprocess_data('data/raw_data/' + task + '/train', task) save(train_data, 'data/preprocessed_data/baseline/' + task, 'train') test_data, dim = preprocess_data('data/raw_data/' + task + '/test', task) save(test_data, 'data/preprocessed_data/baseline/' + task, 'test')
1,878
0
69
69654bd4eaf9e6ddbb228cf5eb6cfebf7c5a9c0f
754
py
Python
appengine/app.py
wickedchicken/timebug
a7164dd0c9b7e992deba5a232073d001bd3448c1
[ "BSD-2-Clause" ]
null
null
null
appengine/app.py
wickedchicken/timebug
a7164dd0c9b7e992deba5a232073d001bd3448c1
[ "BSD-2-Clause" ]
1
2019-10-05T21:48:45.000Z
2019-10-05T21:48:45.000Z
appengine/app.py
wickedchicken/timebug
a7164dd0c9b7e992deba5a232073d001bd3448c1
[ "BSD-2-Clause" ]
null
null
null
import webapp2 from webapp2_extras import jinja2 class BaseHandler(webapp2.RequestHandler): """Provide a cached Jinja environment to each request.""" @webapp2.cached_property app = webapp2.WSGIApplication([("/_ah/warmup", MainPage), ('/', MainPage), ])
27.925926
63
0.690981
import webapp2 from webapp2_extras import jinja2 class BaseHandler(webapp2.RequestHandler): """Provide a cached Jinja environment to each request.""" @webapp2.cached_property def jinja2(self): # Returns a Jinja2 renderer cached in the app registry. return jinja2.get_jinja2(app=self.app) def render_response(self, _template, **context): # Renders a template and writes the result to the response. rv = self.jinja2.render_template(_template, **context) self.response.write(rv) class MainPage(BaseHandler): def get(self): context = {'title': 'Example App'} self.render_response('main.html', **context) app = webapp2.WSGIApplication([("/_ah/warmup", MainPage), ('/', MainPage), ])
358
7
96
6200257d7e59c1ae462e27c608d6cbec78e80fee
665
py
Python
tests/choice/test_choice.py
xlurio/RockPaperScissorsPy
927bbd1480dbca70c9bc3b982f4034ac2ff33c57
[ "MIT" ]
null
null
null
tests/choice/test_choice.py
xlurio/RockPaperScissorsPy
927bbd1480dbca70c9bc3b982f4034ac2ff33c57
[ "MIT" ]
null
null
null
tests/choice/test_choice.py
xlurio/RockPaperScissorsPy
927bbd1480dbca70c9bc3b982f4034ac2ff33c57
[ "MIT" ]
null
null
null
import unittest from src.choice import Choice from src.choice.exceptions import InvalidChoiceException class UserChoiceTests(unittest.TestCase): """Tests for the user choice class""" def test_valid_choice(self): """Test valid user input""" choice = Choice('r') self.assertTrue(choice.is_valid()) self.assertEqual(choice.get_choice(), 0) def test_invalid_choice(self): """Test invalid user input""" choice = Choice('h') self.assertFalse(choice.is_valid()) with self.assertRaises(InvalidChoiceException): choice.get_choice() if __name__ == '__main__': unittest.main()
25.576923
56
0.666165
import unittest from src.choice import Choice from src.choice.exceptions import InvalidChoiceException class UserChoiceTests(unittest.TestCase): """Tests for the user choice class""" def test_valid_choice(self): """Test valid user input""" choice = Choice('r') self.assertTrue(choice.is_valid()) self.assertEqual(choice.get_choice(), 0) def test_invalid_choice(self): """Test invalid user input""" choice = Choice('h') self.assertFalse(choice.is_valid()) with self.assertRaises(InvalidChoiceException): choice.get_choice() if __name__ == '__main__': unittest.main()
0
0
0
0713d78df8377d0c6b7c00eaf68bd9b197d1fbac
609
py
Python
networkit/test/test_centrality.py
angriman/network
3a4c5fd32eb2be8d5b34eaee17f8fe4e6e141894
[ "MIT" ]
366
2019-06-27T18:48:18.000Z
2022-03-29T08:36:49.000Z
networkit/test/test_centrality.py
angriman/network
3a4c5fd32eb2be8d5b34eaee17f8fe4e6e141894
[ "MIT" ]
387
2019-06-24T11:30:39.000Z
2022-03-31T10:37:28.000Z
networkit/test/test_centrality.py
angriman/network
3a4c5fd32eb2be8d5b34eaee17f8fe4e6e141894
[ "MIT" ]
131
2019-07-04T15:40:13.000Z
2022-03-29T12:34:23.000Z
#!/usr/bin/env python3 import unittest import os import networkit as nk if __name__ == "__main__": unittest.main()
18.454545
60
0.651888
#!/usr/bin/env python3 import unittest import os import networkit as nk class Test_Centrality(unittest.TestCase): def test_DegreeCentrality(self): g = nk.Graph(8, False, False) g.addEdge(0, 2) g.addEdge(0, 5) g.addEdge(1, 2) g.addEdge(2, 3) g.addEdge(2, 2) g.addEdge(2, 4) g.addEdge(3, 5) g.addEdge(4, 5) g.addEdge(5, 5) g.addEdge(5, 6) g.addEdge(5, 7) g.addEdge(7, 7) expected_result = [2.0, 1.0, 4.0, 2.0, 2.0, 5.0, 1.0, 1.0] dc = nk.centrality.DegreeCentrality(g).run().scores() self.assertListEqual(expected_result, dc) if __name__ == "__main__": unittest.main()
424
20
47
6bff15a4444dc05907bed9946e38668c9876c9d2
931
py
Python
model.py
Ayantika22/Flask-program-For-Wine-Dataset
aa28a92116c1b2735883e43ed1ef3c9f58239bbc
[ "MIT" ]
2
2020-06-29T15:14:56.000Z
2020-11-26T08:48:43.000Z
model.py
Ayantika22/Flask-Program-for-Wine-Dataset
aa28a92116c1b2735883e43ed1ef3c9f58239bbc
[ "MIT" ]
null
null
null
model.py
Ayantika22/Flask-Program-for-Wine-Dataset
aa28a92116c1b2735883e43ed1ef3c9f58239bbc
[ "MIT" ]
1
2021-05-08T10:18:50.000Z
2021-05-08T10:18:50.000Z
# -*- coding: utf-8 -*- """ Created on Fri Feb 28 15:03:12 2020 @author: Ayantika """ # Importing necessary libraries import numpy as np import pandas as pd from pandas import Series, DataFrame from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle # Reading the data Wine = pd.read_csv("Wine.csv") print(Wine.head()) #iris.drop("Id", axis=1, inplace = True) y = Wine['Customer_Segment'] Wine.drop(columns='Customer_Segment',inplace=True) X = Wine[['Alcohol', 'Malic_Acid', 'Ash', 'Ash_Alcanity', 'Magnesium', 'Total_Phenols', 'Flavanoids', 'Nonflavanoid_Phenols', 'Proanthocyanins', 'Color_Intensity', 'Hue', 'OD280', 'Proline']] # Training the model x_train,x_test,y_train,y_test = train_test_split(X,y, test_size=0.3) model = LogisticRegression() model.fit(x_train,y_train) pickle.dump(model,open('model.pkl','wb'))
30.032258
103
0.712137
# -*- coding: utf-8 -*- """ Created on Fri Feb 28 15:03:12 2020 @author: Ayantika """ # Importing necessary libraries import numpy as np import pandas as pd from pandas import Series, DataFrame from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import pickle # Reading the data Wine = pd.read_csv("Wine.csv") print(Wine.head()) #iris.drop("Id", axis=1, inplace = True) y = Wine['Customer_Segment'] Wine.drop(columns='Customer_Segment',inplace=True) X = Wine[['Alcohol', 'Malic_Acid', 'Ash', 'Ash_Alcanity', 'Magnesium', 'Total_Phenols', 'Flavanoids', 'Nonflavanoid_Phenols', 'Proanthocyanins', 'Color_Intensity', 'Hue', 'OD280', 'Proline']] # Training the model x_train,x_test,y_train,y_test = train_test_split(X,y, test_size=0.3) model = LogisticRegression() model.fit(x_train,y_train) pickle.dump(model,open('model.pkl','wb'))
0
0
0
ce46e50cde4a68b91ffc35cb64668b934bd1c3de
2,737
py
Python
seed.py
jrrlokken/issue-tracking-system
33b9b68dd821c8a05cdbc8de87645f61da06f0bd
[ "MIT" ]
1
2021-02-20T04:26:36.000Z
2021-02-20T04:26:36.000Z
seed.py
jrrlokken/issue-tracking-system
33b9b68dd821c8a05cdbc8de87645f61da06f0bd
[ "MIT" ]
2
2021-04-06T18:14:38.000Z
2021-06-02T02:45:15.000Z
seed.py
jrrlokken/issue-tracking-system
33b9b68dd821c8a05cdbc8de87645f61da06f0bd
[ "MIT" ]
null
null
null
from app import app from models import db, connect_db, User, Issue, Comment, Priority, Status, Category, Role # Drop db tables and create them anew db.drop_all() db.create_all() # Priority p1 = Priority( priority_id=0, priority_label="Low" ) p2 = Priority( priority_id=1, priority_label="Medium" ) p3 = Priority( priority_id=2, priority_label="High" ) p4 = Priority( priority_id=3, priority_label="Urgent" ) # Status s1 = Status( status_id=0, status_label="Submitted" ) s2 = Status( status_id=1, status_label="Assigned" ) s3 = Status( status_id=2, status_label="Resolved" ) # Category c1 = Category( category_id=0, category_label="Technical Issue" ) c2 = Category( category_id=1, category_label="Customer Complaint" ) c3 = Category( category_id=2, category_label="Product Request" ) ro1 = Role( role_id=0, role_label="user" ) ro2 = Role( role_id=1, role_label="assignee" ) ro3 = Role( role_id=2, role_label="admin" ) db.session.add_all([p1,p2,p3,p4,s1,s2,s3,c1,c2,c3,ro1,ro2,ro3]) db.session.commit() # Sample users. # u1 = User.register( # email="[email protected]", # first_name="Admin", # last_name="User", # password="password1" # ) # u2 = User.register( # email="[email protected]", # first_name="Regular", # last_name="User", # password="password2" # ) # u3 = User.register( # email="[email protected]", # first_name="Assignee", # last_name="User", # password="password3" # ) # u1.role = 2 # u3.role = 1 # db.session.commit() # # Sample issues # i1 = Issue( # title="Printer on fire!", # text="Huge flames are shooting out of paper tray 1!!! Please bring fire extinguisher ASAP!!!", # reporter=2 # ) # i2 = Issue( # title="Computer not responding", # text="My PC is showing the loading spinner and will not respond to keyboard or mouse input. It has been doing this for 6 weeks.", # reporter=2 # ) # i3 = Issue( # title="Please bring in nacho flavored Beanfields chips", # text="We're not saying you're going to get addicted to our slamming NACHO, but we're also not going to say you won't. Nacho-lly we're biased since it is our best seller. NACHO just has unmatched taste that makes being cheesy, well, cool and vegan. The kinda vegan you want at your barbecue so you can say, 'yeah NACHO came with me. We're good like that.' Nacho average tortilla chip.", # category=2, # reporter=3 # ) # i4 = Issue( # title="Clerk was rude and dismissive", # text="She told me to wear a mask, and I don't wanna!", # category=1, # reporter=3 # ) # db.session.add_all([i1,i2,i3,i4]) # db.session.commit()
19.411348
391
0.650347
from app import app from models import db, connect_db, User, Issue, Comment, Priority, Status, Category, Role # Drop db tables and create them anew db.drop_all() db.create_all() # Priority p1 = Priority( priority_id=0, priority_label="Low" ) p2 = Priority( priority_id=1, priority_label="Medium" ) p3 = Priority( priority_id=2, priority_label="High" ) p4 = Priority( priority_id=3, priority_label="Urgent" ) # Status s1 = Status( status_id=0, status_label="Submitted" ) s2 = Status( status_id=1, status_label="Assigned" ) s3 = Status( status_id=2, status_label="Resolved" ) # Category c1 = Category( category_id=0, category_label="Technical Issue" ) c2 = Category( category_id=1, category_label="Customer Complaint" ) c3 = Category( category_id=2, category_label="Product Request" ) ro1 = Role( role_id=0, role_label="user" ) ro2 = Role( role_id=1, role_label="assignee" ) ro3 = Role( role_id=2, role_label="admin" ) db.session.add_all([p1,p2,p3,p4,s1,s2,s3,c1,c2,c3,ro1,ro2,ro3]) db.session.commit() # Sample users. # u1 = User.register( # email="[email protected]", # first_name="Admin", # last_name="User", # password="password1" # ) # u2 = User.register( # email="[email protected]", # first_name="Regular", # last_name="User", # password="password2" # ) # u3 = User.register( # email="[email protected]", # first_name="Assignee", # last_name="User", # password="password3" # ) # u1.role = 2 # u3.role = 1 # db.session.commit() # # Sample issues # i1 = Issue( # title="Printer on fire!", # text="Huge flames are shooting out of paper tray 1!!! Please bring fire extinguisher ASAP!!!", # reporter=2 # ) # i2 = Issue( # title="Computer not responding", # text="My PC is showing the loading spinner and will not respond to keyboard or mouse input. It has been doing this for 6 weeks.", # reporter=2 # ) # i3 = Issue( # title="Please bring in nacho flavored Beanfields chips", # text="We're not saying you're going to get addicted to our slamming NACHO, but we're also not going to say you won't. Nacho-lly we're biased since it is our best seller. NACHO just has unmatched taste that makes being cheesy, well, cool and vegan. The kinda vegan you want at your barbecue so you can say, 'yeah NACHO came with me. We're good like that.' Nacho average tortilla chip.", # category=2, # reporter=3 # ) # i4 = Issue( # title="Clerk was rude and dismissive", # text="She told me to wear a mask, and I don't wanna!", # category=1, # reporter=3 # ) # db.session.add_all([i1,i2,i3,i4]) # db.session.commit()
0
0
0
4cb1a20de656973fca2fc1192b2c5183563fa9cf
70
py
Python
pizza_auth/run.py
andimiller/pizza-auth
e36870a4edf84a203bbaad5911e2b0e5f605f60e
[ "MIT" ]
2
2015-06-12T08:26:02.000Z
2015-09-09T00:25:59.000Z
pizza_auth/run.py
Sylnai/pizza-auth
e36870a4edf84a203bbaad5911e2b0e5f605f60e
[ "MIT" ]
1
2021-06-15T20:28:49.000Z
2021-06-15T20:28:49.000Z
pizza_auth/run.py
Sylnai/pizza-auth
e36870a4edf84a203bbaad5911e2b0e5f605f60e
[ "MIT" ]
2
2015-11-13T16:43:30.000Z
2016-09-15T18:39:05.000Z
from main import app app.run(host='127.0.0.1', port=8090, debug=True)
23.333333
48
0.714286
from main import app app.run(host='127.0.0.1', port=8090, debug=True)
0
0
0
0e46de584e9f7e867a5e9c740f4b6ef3e9ef32f6
3,584
py
Python
pymco/security/ssl.py
jantman/python-mcollective
ceb8f362bc8a1981b42696889250bed1cce07fea
[ "BSD-3-Clause" ]
1
2015-07-29T00:35:51.000Z
2015-07-29T00:35:51.000Z
pymco/security/ssl.py
jantman/python-mcollective
ceb8f362bc8a1981b42696889250bed1cce07fea
[ "BSD-3-Clause" ]
null
null
null
pymco/security/ssl.py
jantman/python-mcollective
ceb8f362bc8a1981b42696889250bed1cce07fea
[ "BSD-3-Clause" ]
null
null
null
""" :py:mod:`pymco.ssl` ------------------- Contains SSL security provider plugin. """ from __future__ import print_function import base64 import os try: from Crypto.Signature import PKCS1_v1_5 from Crypto.Hash import SHA except ImportError as exc: print('You need install pycrypto for using SSL security provider') raise exc from .. import exc from . import SecurityProvider from .. import utils class SSLProvider(SecurityProvider): """Provide SSL security provider plugin. See http://docs.puppetlabs.com/mcollective/reference/plugins/security_ssl.html for further information. """ def sign(self, msg): """Implement :py:meth:`pymco.security.SecurityProvider.sign`.""" msg[':callerid'] = self.callerid msg[':hash'] = self.get_hash(msg) return msg def verify(self, msg): """Implement :py:meth:`pymco.security.SecurityProvider.verify`.""" hash_ = SHA.new(msg[':body'].encode('utf8')) verifier = PKCS1_v1_5.new(self.server_public_key) signature = base64.b64decode(msg[':hash']) if not verifier.verify(hash_, signature): raise exc.VerificationError( 'Message {0} can\'t be verified'.format(msg)) return msg def get_hash(self, msg): """Get the hash for the given message. :arg pymco.message.Message msg: message to get hash for. :return: message hash so the receiver can verify the message. """ hashed_signature = SHA.new(msg[':body'].encode('utf8')) signer = PKCS1_v1_5.new(self.private_key) hashed_signature = signer.sign(hashed_signature) return base64.b64encode(hashed_signature) @property def callerid(self): """Property returning the MCollective SSL caller id. As MCollective docs states, the caller ID will be the name of public key filename, without the extension part. """ if not self._caller_id: caller_id = os.path.basename( self.config['plugin.ssl_client_public']).split('.')[0] self._caller_id = 'cert={0}'.format(caller_id) return self._caller_id @property def server_public_key(self): """Property returning the server public key after being loaded.""" return self._load_rsa_key(key='plugin.ssl_server_public', cache=self._server_public_key) @property def private_key(self): """Property returning the private key after being loaded.""" return self._load_rsa_key(key='plugin.ssl_client_private', cache=self._private_key) @property def serializer(self): """Property returning the serializer object. Serailzer object should be any subclass :py:class:`pymco.serializer.Serializer`, depending on configuration. However, right now, only YAML serialization can be supported, since the default serializer (Marshal) isn't portable. """ if not self._serializer: self._serializer = self.config.get_serializer('plugin.ssl_serializer') return self._serializer
32.581818
82
0.644252
""" :py:mod:`pymco.ssl` ------------------- Contains SSL security provider plugin. """ from __future__ import print_function import base64 import os try: from Crypto.Signature import PKCS1_v1_5 from Crypto.Hash import SHA except ImportError as exc: print('You need install pycrypto for using SSL security provider') raise exc from .. import exc from . import SecurityProvider from .. import utils class SSLProvider(SecurityProvider): """Provide SSL security provider plugin. See http://docs.puppetlabs.com/mcollective/reference/plugins/security_ssl.html for further information. """ def __init__(self, config): super(SSLProvider, self).__init__(config=config) self._private_key = None self._server_public_key = None self._caller_id = None self._serializer = None def sign(self, msg): """Implement :py:meth:`pymco.security.SecurityProvider.sign`.""" msg[':callerid'] = self.callerid msg[':hash'] = self.get_hash(msg) return msg def verify(self, msg): """Implement :py:meth:`pymco.security.SecurityProvider.verify`.""" hash_ = SHA.new(msg[':body'].encode('utf8')) verifier = PKCS1_v1_5.new(self.server_public_key) signature = base64.b64decode(msg[':hash']) if not verifier.verify(hash_, signature): raise exc.VerificationError( 'Message {0} can\'t be verified'.format(msg)) return msg def get_hash(self, msg): """Get the hash for the given message. :arg pymco.message.Message msg: message to get hash for. :return: message hash so the receiver can verify the message. """ hashed_signature = SHA.new(msg[':body'].encode('utf8')) signer = PKCS1_v1_5.new(self.private_key) hashed_signature = signer.sign(hashed_signature) return base64.b64encode(hashed_signature) @property def callerid(self): """Property returning the MCollective SSL caller id. As MCollective docs states, the caller ID will be the name of public key filename, without the extension part. """ if not self._caller_id: caller_id = os.path.basename( self.config['plugin.ssl_client_public']).split('.')[0] self._caller_id = 'cert={0}'.format(caller_id) return self._caller_id def _load_rsa_key(self, key, cache): if not cache: cache = self._server_public_key = utils.load_rsa_key(self.config[key]) return cache @property def server_public_key(self): """Property returning the server public key after being loaded.""" return self._load_rsa_key(key='plugin.ssl_server_public', cache=self._server_public_key) @property def private_key(self): """Property returning the private key after being loaded.""" return self._load_rsa_key(key='plugin.ssl_client_private', cache=self._private_key) @property def serializer(self): """Property returning the serializer object. Serailzer object should be any subclass :py:class:`pymco.serializer.Serializer`, depending on configuration. However, right now, only YAML serialization can be supported, since the default serializer (Marshal) isn't portable. """ if not self._serializer: self._serializer = self.config.get_serializer('plugin.ssl_serializer') return self._serializer
340
0
53
b1120b8ff6bc0605d09869d7d8a210da4ab8091e
1,356
py
Python
client/client.py
ArkEcosystem/ARK-Python-Client
98d78442b7b1088a533837d2cc674af8c2e6baae
[ "MIT" ]
14
2018-06-15T06:09:17.000Z
2021-04-08T19:59:07.000Z
client/client.py
ArkEcosystem/ARK-Python-Client
98d78442b7b1088a533837d2cc674af8c2e6baae
[ "MIT" ]
78
2018-06-15T07:59:46.000Z
2021-03-29T02:25:11.000Z
client/client.py
ArkEcosystem/ARK-Python-Client
98d78442b7b1088a533837d2cc674af8c2e6baae
[ "MIT" ]
48
2018-06-14T15:46:59.000Z
2022-01-24T18:26:09.000Z
import inspect import pkgutil from importlib import import_module from pathlib import Path from client.connection import Connection from client.exceptions import ArkParameterException from client.resource import Resource
35.684211
84
0.608407
import inspect import pkgutil from importlib import import_module from pathlib import Path from client.connection import Connection from client.exceptions import ArkParameterException from client.resource import Resource class ArkClient(object): def __init__(self, hostname): """ :param string hostname: Node hostname. Examples: `http://127.0.0.1:4002` or `http://my.domain.io/api/`. This is to allow people to server the api on whatever url they want. """ self.connection = Connection(hostname) self._import_api() def _import_api(self): """ Dynamically imports API endpoints. """ modules = pkgutil.iter_modules([str(Path(__file__).parent / 'api')]) for _, name, _ in modules: module = import_module('client.api.{}'.format(name)) for attr in dir(module): # If attr name is `Resource`, skip it as it's a class and also has a # subclass of Resource if attr == 'Resource': continue attribute = getattr(module, attr) if inspect.isclass(attribute) and issubclass(attribute, Resource): # Set module class as a property on the client setattr(self, name, attribute(self.connection))
0
1,111
23
f4b5e2b392444820619c6206589c11e19fa5d27c
1,821
py
Python
plugins/maya/load/load_camera.py
davidlatwe/reveries-config
4a282dd64a32a9b87bd1a070759b6425ff785d68
[ "MIT" ]
3
2020-04-01T10:51:17.000Z
2021-08-05T18:35:23.000Z
plugins/maya/load/load_camera.py
davidlatwe/reveries-config
4a282dd64a32a9b87bd1a070759b6425ff785d68
[ "MIT" ]
null
null
null
plugins/maya/load/load_camera.py
davidlatwe/reveries-config
4a282dd64a32a9b87bd1a070759b6425ff785d68
[ "MIT" ]
1
2020-07-05T12:06:30.000Z
2020-07-05T12:06:30.000Z
import avalon.api from reveries.maya import lib, capsule from reveries.maya.plugins import ReferenceLoader class CameraLoader(ReferenceLoader, avalon.api.Loader): """Specific loader for the reveries.camera family""" label = "Reference camera" order = -10 icon = "code-fork" color = "orange" hosts = ["maya"] families = ["reveries.camera"] representations = [ "mayaAscii", "Alembic", "FBX", ]
31.947368
74
0.500824
import avalon.api from reveries.maya import lib, capsule from reveries.maya.plugins import ReferenceLoader class CameraLoader(ReferenceLoader, avalon.api.Loader): """Specific loader for the reveries.camera family""" label = "Reference camera" order = -10 icon = "code-fork" color = "orange" hosts = ["maya"] families = ["reveries.camera"] representations = [ "mayaAscii", "Alembic", "FBX", ] def process_reference(self, context, name, namespace, group, options): import maya.cmds as cmds representation = context["representation"] entry_path = self.file_path(representation) nodes = cmds.file(entry_path, namespace=namespace, ignoreVersion=True, sharedReferenceFile=False, groupReference=True, groupName=group, reference=True, lockReference=False, returnNewNodes=True) # Lock camera camera = cmds.listRelatives(cmds.ls(type="camera", long=True), parent=True, fullPath=True)[0] with capsule.ref_edit_unlock(): lib.lock_transform(camera, additional=["focalLength", "cameraAperture", "lensSqueezeRatio", "shutterAngle", "centerOfInterest"]) lib.lock_transform(group) self[:] = nodes def switch(self, container, representation): self.update(container, representation)
1,308
0
54
c7e8cb15efaa4177f1474ef5a37bbf23c0a74d1c
3,064
py
Python
_pycharm_skeletons/renderdoc/D3D12OM.py
Lex-DRL/renderdoc-py-stubs
75d280e4f500ded506f3315a49fc432b37ab4fa6
[ "MIT" ]
null
null
null
_pycharm_skeletons/renderdoc/D3D12OM.py
Lex-DRL/renderdoc-py-stubs
75d280e4f500ded506f3315a49fc432b37ab4fa6
[ "MIT" ]
null
null
null
_pycharm_skeletons/renderdoc/D3D12OM.py
Lex-DRL/renderdoc-py-stubs
75d280e4f500ded506f3315a49fc432b37ab4fa6
[ "MIT" ]
null
null
null
# encoding: utf-8 # module renderdoc # from P:\1-Scripts\_Python\Py-Autocomplete\renderdoc.pyd # by generator 1.146 # no doc # imports import enum as __enum from .SwigPyObject import SwigPyObject class D3D12OM(SwigPyObject): """ Describes the current state of the output-merger stage of the D3D12 pipeline. """ def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass blendState = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A :class:`D3D12BlendState` with the details of the blend state.""" depthReadOnly = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """``True`` if depth access to the depth-stencil target is read-only.""" depthStencilState = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A :class:`D3D12DepthStencilState` with the details of the depth-stencil state.""" depthTarget = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A :class:`D3D12View` with details of the bound depth-stencil target.""" multiSampleCount = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """The sample count used for rendering.""" multiSampleQuality = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """The MSAA quality level used for rendering.""" renderTargets = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A list of :class:`D3D12View` describing the bound render targets.""" stencilReadOnly = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """``True`` if stenncil access to the depth-stencil target is read-only.""" this = property(lambda self: object(), lambda self, v: None, lambda self: None) # default thisown = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __dict__ = None # (!) real value is ''
36.915663
108
0.649151
# encoding: utf-8 # module renderdoc # from P:\1-Scripts\_Python\Py-Autocomplete\renderdoc.pyd # by generator 1.146 # no doc # imports import enum as __enum from .SwigPyObject import SwigPyObject class D3D12OM(SwigPyObject): """ Describes the current state of the output-merger stage of the D3D12 pipeline. """ def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass blendState = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A :class:`D3D12BlendState` with the details of the blend state.""" depthReadOnly = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """``True`` if depth access to the depth-stencil target is read-only.""" depthStencilState = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A :class:`D3D12DepthStencilState` with the details of the depth-stencil state.""" depthTarget = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A :class:`D3D12View` with details of the bound depth-stencil target.""" multiSampleCount = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """The sample count used for rendering.""" multiSampleQuality = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """The MSAA quality level used for rendering.""" renderTargets = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """A list of :class:`D3D12View` describing the bound render targets.""" stencilReadOnly = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """``True`` if stenncil access to the depth-stencil target is read-only.""" this = property(lambda self: object(), lambda self, v: None, lambda self: None) # default thisown = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __dict__ = None # (!) real value is ''
53
0
27
212a25f9662c6caa2c9493596023de0bdd71b50b
96
py
Python
venv/lib/python3.8/site-packages/jedi/inference/param.py
Retraces/UkraineBot
3d5d7f8aaa58fa0cb8b98733b8808e5dfbdb8b71
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/jedi/inference/param.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/jedi/inference/param.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/85/03/a8/e8d26fae6c7b3b8548be18e886767b946dd069a8481930ee9dda2adccd
96
96
0.895833
/home/runner/.cache/pip/pool/85/03/a8/e8d26fae6c7b3b8548be18e886767b946dd069a8481930ee9dda2adccd
0
0
0
e1ec4bfdb1db438cb20b46e1d2458eda58f02dfb
1,406
py
Python
Paper_Plots/Paper_Plots/Case3/plots_case3.py
RuiNian7319/Woodberry_Distillation
4ee8ab9de8e313bca48d9a7af9393abcad85ece4
[ "MIT" ]
3
2019-07-18T06:43:49.000Z
2021-05-13T12:34:24.000Z
Paper_Plots/Paper_Plots/Case3/plots_case3.py
HTL2018/Woodberry_Distillation
4ee8ab9de8e313bca48d9a7af9393abcad85ece4
[ "MIT" ]
null
null
null
Paper_Plots/Paper_Plots/Case3/plots_case3.py
HTL2018/Woodberry_Distillation
4ee8ab9de8e313bca48d9a7af9393abcad85ece4
[ "MIT" ]
1
2020-08-12T13:12:00.000Z
2020-08-12T13:12:00.000Z
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import itertools fonts = {"family": "serif", "weight": "normal", "size": "12"} plt.rc('font', **fonts) plt.rc('text', usetex=True) ftc_noiseless = np.loadtxt('ftc_noiseless_case3.csv') ftc_noise = np.loadtxt('ftc_noise_case3.csv') no_ftc_noiseless = np.loadtxt('no_ftc_noiseless_case3.csv') x = np.linspace(0, ftc_noiseless.shape[0], ftc_noiseless.shape[0] - 50) with sns.cubehelix_palette(8, start=.5, rot=-.75, reverse=True): ax = plt.subplot(111) ax.plot(x, no_ftc_noiseless[50:, 0], label=r'$X_D$ No FTC (Noiseless)', linestyle='-.') ax.plot(x, ftc_noise[50:, 0], label=r'$X_D$ FTC', linestyle='--') ax.plot(x, ftc_noiseless[50:, 0], label=r'$X_D$ FTC (Noiseless)') ax.plot(x, no_ftc_noiseless[50:, 1], linestyle='-.', label=r'$X_B$ No FTC (Noiseless)') ax.plot(x, ftc_noise[50:, 1], linestyle='--', label=r'$X_B$ FTC') ax.plot(x, ftc_noiseless[50:, 1], label=r'$X_B$ FTC (Noiseless)') plt.xlabel(r'Time, \textit{t} (min)') plt.ylabel(r'\%MeOH, $\textit{X}_D$ (wt. \%)') handles, labels = ax.get_legend_handles_labels() plt.legend(flip(handles, 2), flip(labels, 2), loc=6, ncol=2, prop={'size': 12}, frameon=False) plt.savefig('Case3_Plot.eps', format='eps', dpi=1000) plt.show()
32.697674
94
0.66074
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import itertools fonts = {"family": "serif", "weight": "normal", "size": "12"} plt.rc('font', **fonts) plt.rc('text', usetex=True) ftc_noiseless = np.loadtxt('ftc_noiseless_case3.csv') ftc_noise = np.loadtxt('ftc_noise_case3.csv') no_ftc_noiseless = np.loadtxt('no_ftc_noiseless_case3.csv') x = np.linspace(0, ftc_noiseless.shape[0], ftc_noiseless.shape[0] - 50) with sns.cubehelix_palette(8, start=.5, rot=-.75, reverse=True): ax = plt.subplot(111) ax.plot(x, no_ftc_noiseless[50:, 0], label=r'$X_D$ No FTC (Noiseless)', linestyle='-.') ax.plot(x, ftc_noise[50:, 0], label=r'$X_D$ FTC', linestyle='--') ax.plot(x, ftc_noiseless[50:, 0], label=r'$X_D$ FTC (Noiseless)') ax.plot(x, no_ftc_noiseless[50:, 1], linestyle='-.', label=r'$X_B$ No FTC (Noiseless)') ax.plot(x, ftc_noise[50:, 1], linestyle='--', label=r'$X_B$ FTC') ax.plot(x, ftc_noiseless[50:, 1], label=r'$X_B$ FTC (Noiseless)') plt.xlabel(r'Time, \textit{t} (min)') plt.ylabel(r'\%MeOH, $\textit{X}_D$ (wt. \%)') def flip(items, ncol): return itertools.chain(*[items[i::ncol] for i in range(ncol)]) handles, labels = ax.get_legend_handles_labels() plt.legend(flip(handles, 2), flip(labels, 2), loc=6, ncol=2, prop={'size': 12}, frameon=False) plt.savefig('Case3_Plot.eps', format='eps', dpi=1000) plt.show()
68
0
23
f30bda256908f99bddedb1b9e4707e5b737a2cd2
2,277
py
Python
realtime_hsv_adjust.py
aseber/OpenCV
9b5deef24acdc3664e7989e78d8935bbd140a880
[ "Apache-2.0" ]
2
2016-03-27T01:50:05.000Z
2020-05-17T11:44:31.000Z
realtime_hsv_adjust.py
aseber/OpenCV
9b5deef24acdc3664e7989e78d8935bbd140a880
[ "Apache-2.0" ]
null
null
null
realtime_hsv_adjust.py
aseber/OpenCV
9b5deef24acdc3664e7989e78d8935bbd140a880
[ "Apache-2.0" ]
null
null
null
import cv2 import numpy as np if __name__ == '__main__': main()
41.4
92
0.621871
import cv2 import numpy as np class GUI(): def __init__(self): self.switch_window = cv2.namedWindow("Values") self.hmin_bar = cv2.createTrackbar('Hue Min', 'Values', 0, 255, self.nothing) self.hmax_bar = cv2.createTrackbar('Hue Max', 'Values', 0, 255, self.nothing) hue_min = cv2.setTrackbarPos('Hue Max','Values', 255) self.vmin_bar = cv2.createTrackbar('Value Min', 'Values', 0, 255, self.nothing) self.vmax_bar = cv2.createTrackbar('Value Max', 'Values', 0, 255, self.nothing) hue_min = cv2.setTrackbarPos('Value Max','Values', 255) self.smin_bar = cv2.createTrackbar('Saturation Min', 'Values', 0, 255, self.nothing) self.smax_bar = cv2.createTrackbar('Saturation Max', 'Values', 0, 255, self.nothing) hue_min = cv2.setTrackbarPos('Saturation Max','Values', 255) # self.realtime_button = cv2.createButton('Realtime', 'Values') def run(self): camera = cv2.VideoCapture(-1) while camera.isOpened(): _, originalImage = camera.read() hsvImage = cv2.cvtColor(originalImage, cv2.COLOR_BGR2HSV) hue_min = cv2.getTrackbarPos('Hue Min', 'Values') hue_max = cv2.getTrackbarPos('Hue Max', 'Values') value_min = cv2.getTrackbarPos('Value Min', 'Values') value_max = cv2.getTrackbarPos('Value Max', 'Values') saturation_min = cv2.getTrackbarPos('Saturation Min', 'Values') saturation_max = cv2.getTrackbarPos('Saturation Max', 'Values') lower = np.array([hue_min, saturation_min, value_min]) upper = np.array([hue_max, saturation_max, value_max]) # erode_element = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) # dilate_element = cv2.getStructuringElement(cv2.MORPH_RECT, (8, 8)) mask = cv2.inRange(hsvImage, lower, upper) # mask = cv2.erode(mask, erode_element) # mask = cv2.dilate(mask, dilate_element) cv2.imshow("Original", originalImage) cv2.imshow("Mask", mask) cv2.waitKey(5) cv2.destroyAllWindows() def nothing(self, x): pass def main(): user_gui = GUI() user_gui.run() if __name__ == '__main__': main()
2,092
-9
126
d247f5cc81772dbae25e41899a09b6f15408c0a8
1,084
py
Python
wunderpy3/task_comments_endpoint.py
lwedwards3/dhp_sync
71527142509189915ed39f13975594dd9f837735
[ "MIT" ]
null
null
null
wunderpy3/task_comments_endpoint.py
lwedwards3/dhp_sync
71527142509189915ed39f13975594dd9f837735
[ "MIT" ]
null
null
null
wunderpy3/task_comments_endpoint.py
lwedwards3/dhp_sync
71527142509189915ed39f13975594dd9f837735
[ "MIT" ]
null
null
null
''' Encapsulates all tasks that can be run against the 'notes' endpoint '''
32.848485
105
0.675277
''' Encapsulates all tasks that can be run against the 'notes' endpoint ''' def get_task_comments(client, task_id): params = { 'task_id' : int(task_id) } response = client.authenticated_request(client.api.Endpoints.TASK_COMMENTS, params=params) assert response.status_code == 200 return response.json() def get_list_comments(client, list_id): params = { 'list_id' : int(list_id) } response = client.authenticated_request(client.api.Endpoints.TASK_COMMENTS, params=params) assert response.status_code == 200 return response.json() def get_task_comment(client, comment_id): endpoint = '/'.join([client.api.Endpoints.TASK_COMMENTS, str(comment_id)]) response = client.authenticated_request(endpoint) return response.json() def create_comment(client, task_id, text): data = { 'task_id' : int(task_id), 'text' : text, } response = client.authenticated_request(client.api.Endpoints.TASK_COMMENTS, method='POST', data=data) return response.json()
916
0
91
10dad59116c1f790a9057cde007a47ef33d45728
603
py
Python
blogApp/migrations/0007_auto_20190703_1905.py
blogdevteam/Blog
93a4343261063fedd7a0ef2c60d4adb50c48e4ae
[ "MIT" ]
4
2019-07-07T15:09:54.000Z
2020-05-24T11:02:31.000Z
blogApp/migrations/0007_auto_20190703_1905.py
blogdevteam/Blog
93a4343261063fedd7a0ef2c60d4adb50c48e4ae
[ "MIT" ]
null
null
null
blogApp/migrations/0007_auto_20190703_1905.py
blogdevteam/Blog
93a4343261063fedd7a0ef2c60d4adb50c48e4ae
[ "MIT" ]
null
null
null
# Generated by Django 2.2.2 on 2019-07-03 11:05 from django.db import migrations, models
22.333333
62
0.552239
# Generated by Django 2.2.2 on 2019-07-03 11:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blogApp', '0006_delete_admin'), ] operations = [ migrations.RemoveField( model_name='user', name='image_height', ), migrations.RemoveField( model_name='user', name='image_width', ), migrations.AlterField( model_name='user', name='avatar', field=models.CharField(max_length=100, null=True), ), ]
0
489
23
aa2b5855608326fd65f8812d1bf3493579925c53
1,010
py
Python
Patterns/NeilSayok.py
sanchit781/HACKTOBERFEST2021_PATTERN
c457eb2a1c7b729bdaa26ade7d4c7eb4092291e2
[ "MIT" ]
229
2021-09-10T13:24:47.000Z
2022-03-18T16:54:29.000Z
Patterns/NeilSayok.py
swapnilnarad2000/HACKTOBERFEST2021_PATTERN
567f99bbc3d3bb9d03333422f5e1392251a41439
[ "MIT" ]
164
2021-09-10T12:04:39.000Z
2021-10-29T21:20:42.000Z
Patterns/NeilSayok.py
swapnilnarad2000/HACKTOBERFEST2021_PATTERN
567f99bbc3d3bb9d03333422f5e1392251a41439
[ "MIT" ]
567
2021-09-10T17:35:27.000Z
2021-12-11T12:45:43.000Z
''' Program to convert any Image to Pattern Input your Image URL or just press enter to see the default image. Created by Sayok Dey Majumder. Github User handle : NeilSayok Link to profile: https://github.com/NeilSayok ''' import cv2 import imutils import urllib.request import numpy as np url = input("Enter Url to your Image or Press Enter if you want to use default image\n") if(url == ""): url = 'https://avatars.githubusercontent.com/u/21328143?v=4' req = urllib.request.urlopen(url) arr = np.asarray(bytearray(req.read()), dtype=np.uint8) img = cv2.imdecode(arr, -1) # 'Load it as it is' img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = imutils.resize(img, width=300,height=300) thresh = 127 im_bw = 255 - cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY)[1] print(im_bw.shape) with open("Out.txt", "w") as fh: for a in im_bw: for b in a: if(b == 255): fh.write("*") else: fh.write(" ") fh.write("\n")
20.612245
88
0.646535
''' Program to convert any Image to Pattern Input your Image URL or just press enter to see the default image. Created by Sayok Dey Majumder. Github User handle : NeilSayok Link to profile: https://github.com/NeilSayok ''' import cv2 import imutils import urllib.request import numpy as np url = input("Enter Url to your Image or Press Enter if you want to use default image\n") if(url == ""): url = 'https://avatars.githubusercontent.com/u/21328143?v=4' req = urllib.request.urlopen(url) arr = np.asarray(bytearray(req.read()), dtype=np.uint8) img = cv2.imdecode(arr, -1) # 'Load it as it is' img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = imutils.resize(img, width=300,height=300) thresh = 127 im_bw = 255 - cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY)[1] print(im_bw.shape) with open("Out.txt", "w") as fh: for a in im_bw: for b in a: if(b == 255): fh.write("*") else: fh.write(" ") fh.write("\n")
0
0
0
d9aadf3cb80ac0f1700d00242c3a7ee13aeffba4
12,727
py
Python
poky/scripts/lib/buildstats.py
buildlinux/unityos
dcbe232d0589013d77a62c33959d6a69f9bfbc5e
[ "Apache-2.0" ]
53
2018-02-28T08:51:32.000Z
2022-02-28T06:49:23.000Z
scripts/lib/buildstats.py
nareshgbhat/luv-yocto
48976c54238dda0791e274927371265d259c0e5a
[ "MIT" ]
27
2018-01-25T00:26:53.000Z
2020-08-09T05:20:04.000Z
scripts/lib/buildstats.py
nareshgbhat/luv-yocto
48976c54238dda0791e274927371265d259c0e5a
[ "MIT" ]
51
2018-02-21T04:46:08.000Z
2022-03-02T04:20:41.000Z
# # Copyright (c) 2017, Intel Corporation. # # This program is free software; you can redistribute it and/or modify it # under the terms and conditions of the GNU General Public License, # version 2, as published by the Free Software Foundation. # # This program is distributed in the hope it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # """Functionality for analyzing buildstats""" import json import logging import os import re from collections import namedtuple,OrderedDict from statistics import mean log = logging.getLogger() taskdiff_fields = ('pkg', 'pkg_op', 'task', 'task_op', 'value1', 'value2', 'absdiff', 'reldiff') TaskDiff = namedtuple('TaskDiff', ' '.join(taskdiff_fields)) class BSError(Exception): """Error handling of buildstats""" pass class BSTaskAggregate(object): """Class representing multiple runs of the same task""" properties = ('cputime', 'walltime', 'read_bytes', 'write_bytes', 'read_ops', 'write_ops') def append(self, task): """Append new task""" # Reset pre-calculated properties assert isinstance(task, BSTask), "Type is '{}' instead of 'BSTask'".format(type(task)) self._properties = {} self._tasks.append(task) class BSRecipe(object): """Class representing buildstats of one recipe""" def aggregate(self, bsrecipe): """Aggregate data of another recipe buildstats""" if self.nevr != bsrecipe.nevr: raise ValueError("Refusing to aggregate buildstats, recipe version " "differs: {} vs. {}".format(self.nevr, bsrecipe.nevr)) if set(self.tasks.keys()) != set(bsrecipe.tasks.keys()): raise ValueError("Refusing to aggregate buildstats, set of tasks " "in {} differ".format(self.name)) for taskname, taskdata in bsrecipe.tasks.items(): if not isinstance(self.tasks[taskname], BSTaskAggregate): self.tasks[taskname] = BSTaskAggregate([self.tasks[taskname]]) self.tasks[taskname].append(taskdata) @property class BuildStats(dict): """Class representing buildstats of one build""" @property def num_tasks(self): """Get number of tasks""" num = 0 for recipe in self.values(): num += len(recipe.tasks) return num @classmethod def from_json(cls, bs_json): """Create new BuildStats object from JSON object""" buildstats = cls() for recipe in bs_json: if recipe['name'] in buildstats: raise BSError("Cannot handle multiple versions of the same " "package ({})".format(recipe['name'])) bsrecipe = BSRecipe(recipe['name'], recipe['epoch'], recipe['version'], recipe['revision']) for task, data in recipe['tasks'].items(): bsrecipe.tasks[task] = BSTask(data) buildstats[recipe['name']] = bsrecipe return buildstats @staticmethod def from_file_json(path): """Load buildstats from a JSON file""" with open(path) as fobj: bs_json = json.load(fobj) return BuildStats.from_json(bs_json) @staticmethod def split_nevr(nevr): """Split name and version information from recipe "nevr" string""" n_e_v, revision = nevr.rsplit('-', 1) match = re.match(r'^(?P<name>\S+)-((?P<epoch>[0-9]{1,5})_)?(?P<version>[0-9]\S*)$', n_e_v) if not match: # If we're not able to parse a version starting with a number, just # take the part after last dash match = re.match(r'^(?P<name>\S+)-((?P<epoch>[0-9]{1,5})_)?(?P<version>[^-]+)$', n_e_v) name = match.group('name') version = match.group('version') epoch = match.group('epoch') return name, epoch, version, revision @classmethod def from_dir(cls, path): """Load buildstats from a buildstats directory""" if not os.path.isfile(os.path.join(path, 'build_stats')): raise BSError("{} does not look like a buildstats directory".format(path)) log.debug("Reading buildstats directory %s", path) buildstats = cls() subdirs = os.listdir(path) for dirname in subdirs: recipe_dir = os.path.join(path, dirname) if not os.path.isdir(recipe_dir): continue name, epoch, version, revision = cls.split_nevr(dirname) bsrecipe = BSRecipe(name, epoch, version, revision) for task in os.listdir(recipe_dir): bsrecipe.tasks[task] = BSTask.from_file( os.path.join(recipe_dir, task)) if name in buildstats: raise BSError("Cannot handle multiple versions of the same " "package ({})".format(name)) buildstats[name] = bsrecipe return buildstats def aggregate(self, buildstats): """Aggregate other buildstats into this""" if set(self.keys()) != set(buildstats.keys()): raise ValueError("Refusing to aggregate buildstats, set of " "recipes is different") for pkg, data in buildstats.items(): self[pkg].aggregate(data) def diff_buildstats(bs1, bs2, stat_attr, min_val=None, min_absdiff=None): """Compare the tasks of two buildstats""" tasks_diff = [] pkgs = set(bs1.keys()).union(set(bs2.keys())) for pkg in pkgs: tasks1 = bs1[pkg].tasks if pkg in bs1 else {} tasks2 = bs2[pkg].tasks if pkg in bs2 else {} if not tasks1: pkg_op = '+' elif not tasks2: pkg_op = '-' else: pkg_op = ' ' for task in set(tasks1.keys()).union(set(tasks2.keys())): task_op = ' ' if task in tasks1: val1 = getattr(bs1[pkg].tasks[task], stat_attr) else: task_op = '+' val1 = 0 if task in tasks2: val2 = getattr(bs2[pkg].tasks[task], stat_attr) else: val2 = 0 task_op = '-' if val1 == 0: reldiff = float('inf') else: reldiff = 100 * (val2 - val1) / val1 if min_val and max(val1, val2) < min_val: log.debug("Filtering out %s:%s (%s)", pkg, task, max(val1, val2)) continue if min_absdiff and abs(val2 - val1) < min_absdiff: log.debug("Filtering out %s:%s (difference of %s)", pkg, task, val2-val1) continue tasks_diff.append(TaskDiff(pkg, pkg_op, task, task_op, val1, val2, val2-val1, reldiff)) return tasks_diff class BSVerDiff(object): """Class representing recipe version differences between two buildstats"""
36.362857
95
0.552055
# # Copyright (c) 2017, Intel Corporation. # # This program is free software; you can redistribute it and/or modify it # under the terms and conditions of the GNU General Public License, # version 2, as published by the Free Software Foundation. # # This program is distributed in the hope it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # """Functionality for analyzing buildstats""" import json import logging import os import re from collections import namedtuple,OrderedDict from statistics import mean log = logging.getLogger() taskdiff_fields = ('pkg', 'pkg_op', 'task', 'task_op', 'value1', 'value2', 'absdiff', 'reldiff') TaskDiff = namedtuple('TaskDiff', ' '.join(taskdiff_fields)) class BSError(Exception): """Error handling of buildstats""" pass class BSTask(dict): def __init__(self, *args, **kwargs): self['start_time'] = None self['elapsed_time'] = None self['status'] = None self['iostat'] = {} self['rusage'] = {} self['child_rusage'] = {} super(BSTask, self).__init__(*args, **kwargs) @property def cputime(self): """Sum of user and system time taken by the task""" rusage = self['rusage']['ru_stime'] + self['rusage']['ru_utime'] if self['child_rusage']: # Child rusage may have been optimized out return rusage + self['child_rusage']['ru_stime'] + self['child_rusage']['ru_utime'] else: return rusage @property def walltime(self): """Elapsed wall clock time""" return self['elapsed_time'] @property def read_bytes(self): """Bytes read from the block layer""" return self['iostat']['read_bytes'] @property def write_bytes(self): """Bytes written to the block layer""" return self['iostat']['write_bytes'] @property def read_ops(self): """Number of read operations on the block layer""" if self['child_rusage']: # Child rusage may have been optimized out return self['rusage']['ru_inblock'] + self['child_rusage']['ru_inblock'] else: return self['rusage']['ru_inblock'] @property def write_ops(self): """Number of write operations on the block layer""" if self['child_rusage']: # Child rusage may have been optimized out return self['rusage']['ru_oublock'] + self['child_rusage']['ru_oublock'] else: return self['rusage']['ru_oublock'] @classmethod def from_file(cls, buildstat_file): """Read buildstat text file""" bs_task = cls() log.debug("Reading task buildstats from %s", buildstat_file) end_time = None with open(buildstat_file) as fobj: for line in fobj.readlines(): key, val = line.split(':', 1) val = val.strip() if key == 'Started': start_time = float(val) bs_task['start_time'] = start_time elif key == 'Ended': end_time = float(val) elif key.startswith('IO '): split = key.split() bs_task['iostat'][split[1]] = int(val) elif key.find('rusage') >= 0: split = key.split() ru_key = split[-1] if ru_key in ('ru_stime', 'ru_utime'): val = float(val) else: val = int(val) ru_type = 'rusage' if split[0] == 'rusage' else \ 'child_rusage' bs_task[ru_type][ru_key] = val elif key == 'Status': bs_task['status'] = val if end_time is not None and start_time is not None: bs_task['elapsed_time'] = end_time - start_time else: raise BSError("{} looks like a invalid buildstats file".format(buildstat_file)) return bs_task class BSTaskAggregate(object): """Class representing multiple runs of the same task""" properties = ('cputime', 'walltime', 'read_bytes', 'write_bytes', 'read_ops', 'write_ops') def __init__(self, tasks=None): self._tasks = tasks or [] self._properties = {} def __getattr__(self, name): if name in self.properties: if name not in self._properties: # Calculate properties on demand only. We only provide mean # value, so far self._properties[name] = mean([getattr(t, name) for t in self._tasks]) return self._properties[name] else: raise AttributeError("'BSTaskAggregate' has no attribute '{}'".format(name)) def append(self, task): """Append new task""" # Reset pre-calculated properties assert isinstance(task, BSTask), "Type is '{}' instead of 'BSTask'".format(type(task)) self._properties = {} self._tasks.append(task) class BSRecipe(object): """Class representing buildstats of one recipe""" def __init__(self, name, epoch, version, revision): self.name = name self.epoch = epoch self.version = version self.revision = revision if epoch is None: self.evr = "{}-{}".format(version, revision) else: self.evr = "{}_{}-{}".format(epoch, version, revision) self.tasks = {} def aggregate(self, bsrecipe): """Aggregate data of another recipe buildstats""" if self.nevr != bsrecipe.nevr: raise ValueError("Refusing to aggregate buildstats, recipe version " "differs: {} vs. {}".format(self.nevr, bsrecipe.nevr)) if set(self.tasks.keys()) != set(bsrecipe.tasks.keys()): raise ValueError("Refusing to aggregate buildstats, set of tasks " "in {} differ".format(self.name)) for taskname, taskdata in bsrecipe.tasks.items(): if not isinstance(self.tasks[taskname], BSTaskAggregate): self.tasks[taskname] = BSTaskAggregate([self.tasks[taskname]]) self.tasks[taskname].append(taskdata) @property def nevr(self): return self.name + '-' + self.evr class BuildStats(dict): """Class representing buildstats of one build""" @property def num_tasks(self): """Get number of tasks""" num = 0 for recipe in self.values(): num += len(recipe.tasks) return num @classmethod def from_json(cls, bs_json): """Create new BuildStats object from JSON object""" buildstats = cls() for recipe in bs_json: if recipe['name'] in buildstats: raise BSError("Cannot handle multiple versions of the same " "package ({})".format(recipe['name'])) bsrecipe = BSRecipe(recipe['name'], recipe['epoch'], recipe['version'], recipe['revision']) for task, data in recipe['tasks'].items(): bsrecipe.tasks[task] = BSTask(data) buildstats[recipe['name']] = bsrecipe return buildstats @staticmethod def from_file_json(path): """Load buildstats from a JSON file""" with open(path) as fobj: bs_json = json.load(fobj) return BuildStats.from_json(bs_json) @staticmethod def split_nevr(nevr): """Split name and version information from recipe "nevr" string""" n_e_v, revision = nevr.rsplit('-', 1) match = re.match(r'^(?P<name>\S+)-((?P<epoch>[0-9]{1,5})_)?(?P<version>[0-9]\S*)$', n_e_v) if not match: # If we're not able to parse a version starting with a number, just # take the part after last dash match = re.match(r'^(?P<name>\S+)-((?P<epoch>[0-9]{1,5})_)?(?P<version>[^-]+)$', n_e_v) name = match.group('name') version = match.group('version') epoch = match.group('epoch') return name, epoch, version, revision @classmethod def from_dir(cls, path): """Load buildstats from a buildstats directory""" if not os.path.isfile(os.path.join(path, 'build_stats')): raise BSError("{} does not look like a buildstats directory".format(path)) log.debug("Reading buildstats directory %s", path) buildstats = cls() subdirs = os.listdir(path) for dirname in subdirs: recipe_dir = os.path.join(path, dirname) if not os.path.isdir(recipe_dir): continue name, epoch, version, revision = cls.split_nevr(dirname) bsrecipe = BSRecipe(name, epoch, version, revision) for task in os.listdir(recipe_dir): bsrecipe.tasks[task] = BSTask.from_file( os.path.join(recipe_dir, task)) if name in buildstats: raise BSError("Cannot handle multiple versions of the same " "package ({})".format(name)) buildstats[name] = bsrecipe return buildstats def aggregate(self, buildstats): """Aggregate other buildstats into this""" if set(self.keys()) != set(buildstats.keys()): raise ValueError("Refusing to aggregate buildstats, set of " "recipes is different") for pkg, data in buildstats.items(): self[pkg].aggregate(data) def diff_buildstats(bs1, bs2, stat_attr, min_val=None, min_absdiff=None): """Compare the tasks of two buildstats""" tasks_diff = [] pkgs = set(bs1.keys()).union(set(bs2.keys())) for pkg in pkgs: tasks1 = bs1[pkg].tasks if pkg in bs1 else {} tasks2 = bs2[pkg].tasks if pkg in bs2 else {} if not tasks1: pkg_op = '+' elif not tasks2: pkg_op = '-' else: pkg_op = ' ' for task in set(tasks1.keys()).union(set(tasks2.keys())): task_op = ' ' if task in tasks1: val1 = getattr(bs1[pkg].tasks[task], stat_attr) else: task_op = '+' val1 = 0 if task in tasks2: val2 = getattr(bs2[pkg].tasks[task], stat_attr) else: val2 = 0 task_op = '-' if val1 == 0: reldiff = float('inf') else: reldiff = 100 * (val2 - val1) / val1 if min_val and max(val1, val2) < min_val: log.debug("Filtering out %s:%s (%s)", pkg, task, max(val1, val2)) continue if min_absdiff and abs(val2 - val1) < min_absdiff: log.debug("Filtering out %s:%s (difference of %s)", pkg, task, val2-val1) continue tasks_diff.append(TaskDiff(pkg, pkg_op, task, task_op, val1, val2, val2-val1, reldiff)) return tasks_diff class BSVerDiff(object): """Class representing recipe version differences between two buildstats""" def __init__(self, bs1, bs2): RecipeVerDiff = namedtuple('RecipeVerDiff', 'left right') recipes1 = set(bs1.keys()) recipes2 = set(bs2.keys()) self.new = dict([(r, bs2[r]) for r in sorted(recipes2 - recipes1)]) self.dropped = dict([(r, bs1[r]) for r in sorted(recipes1 - recipes2)]) self.echanged = {} self.vchanged = {} self.rchanged = {} self.unchanged = {} self.empty_diff = False common = recipes2.intersection(recipes1) if common: for recipe in common: rdiff = RecipeVerDiff(bs1[recipe], bs2[recipe]) if bs1[recipe].epoch != bs2[recipe].epoch: self.echanged[recipe] = rdiff elif bs1[recipe].version != bs2[recipe].version: self.vchanged[recipe] = rdiff elif bs1[recipe].revision != bs2[recipe].revision: self.rchanged[recipe] = rdiff else: self.unchanged[recipe] = rdiff if len(recipes1) == len(recipes2) == len(self.unchanged): self.empty_diff = True def __bool__(self): return not self.empty_diff
2,290
3,013
182
43f48d073e76e3341579b198e6e0cf6ab06adbf3
9,011
py
Python
pretrain_style_enc/style_enc_train.py
ShusenTang/WriteLikeYou
a335b02f806d846ba85a6f37f990eb8c2d57b3b6
[ "Apache-2.0" ]
9
2021-01-20T02:52:21.000Z
2022-01-12T02:55:06.000Z
pretrain_style_enc/style_enc_train.py
ShusenTang/WriteLikeYou
a335b02f806d846ba85a6f37f990eb8c2d57b3b6
[ "Apache-2.0" ]
2
2021-06-30T03:40:28.000Z
2022-02-10T09:20:48.000Z
pretrain_style_enc/style_enc_train.py
ShusenTang/WriteLikeYou
a335b02f806d846ba85a6f37f990eb8c2d57b3b6
[ "Apache-2.0" ]
2
2021-09-05T15:10:49.000Z
2021-11-02T11:08:22.000Z
import os import time import random import ast import json import argparse import numpy as np import tensorflow as tf from style_enc_model import Style_Enc_Model from data import CHN_Style_DataLoader from model_utils import save_model, reset_graph NPZ_DIR = "../WriteLikeYouData/npz_relative_dist/CASIA_rdp4.0" assert os.path.exists(NPZ_DIR) print("NPZ_DIR:", NPZ_DIR) def train(sess, model, valid_model, train_dataloader, valid_dataloader, log_root): """Train a model.""" # Setup summary writer. os.makedirs(log_root, exist_ok=True) train_summary_writer = tf.summary.FileWriter(log_root + "/train_log", sess.graph) valid_summary_writer = tf.summary.FileWriter(log_root + "/valid_log") saver = tf.train.Saver(tf.global_variables(), max_to_keep=5) t_vars = tf.trainable_variables() count_t_vars = 0 for var in t_vars: num_param = np.prod(var.get_shape().as_list()) count_t_vars += num_param print('%s %s %d' % (var.name, str(var.get_shape()), num_param)) print('Total trainable variables %d.' % count_t_vars) best_valid_loss = 999999.0 MIN_LR, DECAY = 0.0000001, 0.9999 for step in range(1000000): start = time.time() batch_zi_array, batch_len_array = train_dataloader.get_random_batch_data() curr_learning_rate = (model.init_lr - MIN_LR) * (DECAY ** step) + MIN_LR feed = { model.input_data: batch_zi_array, model.seq_lens: batch_len_array, model.lr: curr_learning_rate, } # training (_, loss, ac_loss, mhe_loss, summ_str) = sess.run([model.train_op, model.loss, model.ac_loss, model.mhe_loss, model.summ], feed) train_summary_writer.add_summary(summ_str, step) train_summary_writer.flush() # log if step % 50 == 0 and step > 0: print("Train step %d, lr:%.6f, loss: %.4f, ac_loss: %.4f, mhe_loss: %.4f; train time: %.2fs" % ( step, curr_learning_rate, loss, ac_loss, mhe_loss, time.time() - start)) # validation if step % 500 == 0 and step > 0: start = time.time() print("validating...", log_root) valid_loss, valid_ac_loss, valid_mhe_loss = evaluate_model(sess, valid_model, valid_dataloader) valid_loss_summ = tf.summary.Summary() valid_loss_summ.value.add(tag='valid_loss', simple_value=float(valid_loss)) valid_loss_summ.value.add(tag='valid_ac_loss', simple_value=float(valid_ac_loss)) valid_loss_summ.value.add(tag='valid_mhe_loss', simple_value=float(valid_mhe_loss)) print("Best valid loss: %.4f, loss: %.4f, ac_loss: %.4f, mhe_loss: %.4f; valid time: %.2fs" % ( best_valid_loss, valid_loss, valid_ac_loss, valid_mhe_loss, time.time() - start)) valid_summary_writer.add_summary(valid_loss_summ, step) valid_summary_writer.flush() if valid_loss < best_valid_loss: best_valid_loss = valid_loss print("Better model, best_valid_loss: %.4f" % best_valid_loss) save_model(sess, saver, log_root, step) if __name__ == '__main__': main()
37.861345
136
0.642215
import os import time import random import ast import json import argparse import numpy as np import tensorflow as tf from style_enc_model import Style_Enc_Model from data import CHN_Style_DataLoader from model_utils import save_model, reset_graph NPZ_DIR = "../WriteLikeYouData/npz_relative_dist/CASIA_rdp4.0" assert os.path.exists(NPZ_DIR) print("NPZ_DIR:", NPZ_DIR) def print_save_args(args, save_dir, readme=""): os.makedirs(save_dir, exist_ok=True) args_dict = vars(args) for key in args_dict.keys(): print(key, "=", args_dict[key]) with open(os.path.join(save_dir, 'model_config.json'), 'w') as f: json.dump(args_dict, f, indent=True) if readme != "": with open(os.path.join(save_dir, 'readme.txt'),"w") as f: f.write(readme) def evaluate_model(sess, model, dataloader): avg_loss = 0.0 avg_ac_loss = 0.0 avg_mhe_loss = 0.0 bn = dataloader.size // dataloader.batch_size for i in range(bn): batch_zi_array, batch_lens = dataloader.get_random_batch_data() feed = { model.input_data: batch_zi_array, model.seq_lens: batch_lens, } (loss, ac_loss, mhe_loss) = sess.run([model.loss, model.ac_loss, model.mhe_loss], feed) avg_loss += loss avg_ac_loss += ac_loss avg_mhe_loss += mhe_loss bn += 1 avg_loss /= bn avg_ac_loss /= bn avg_mhe_loss /= bn return avg_loss, avg_ac_loss, avg_mhe_loss def train(sess, model, valid_model, train_dataloader, valid_dataloader, log_root): """Train a model.""" # Setup summary writer. os.makedirs(log_root, exist_ok=True) train_summary_writer = tf.summary.FileWriter(log_root + "/train_log", sess.graph) valid_summary_writer = tf.summary.FileWriter(log_root + "/valid_log") saver = tf.train.Saver(tf.global_variables(), max_to_keep=5) t_vars = tf.trainable_variables() count_t_vars = 0 for var in t_vars: num_param = np.prod(var.get_shape().as_list()) count_t_vars += num_param print('%s %s %d' % (var.name, str(var.get_shape()), num_param)) print('Total trainable variables %d.' % count_t_vars) best_valid_loss = 999999.0 MIN_LR, DECAY = 0.0000001, 0.9999 for step in range(1000000): start = time.time() batch_zi_array, batch_len_array = train_dataloader.get_random_batch_data() curr_learning_rate = (model.init_lr - MIN_LR) * (DECAY ** step) + MIN_LR feed = { model.input_data: batch_zi_array, model.seq_lens: batch_len_array, model.lr: curr_learning_rate, } # training (_, loss, ac_loss, mhe_loss, summ_str) = sess.run([model.train_op, model.loss, model.ac_loss, model.mhe_loss, model.summ], feed) train_summary_writer.add_summary(summ_str, step) train_summary_writer.flush() # log if step % 50 == 0 and step > 0: print("Train step %d, lr:%.6f, loss: %.4f, ac_loss: %.4f, mhe_loss: %.4f; train time: %.2fs" % ( step, curr_learning_rate, loss, ac_loss, mhe_loss, time.time() - start)) # validation if step % 500 == 0 and step > 0: start = time.time() print("validating...", log_root) valid_loss, valid_ac_loss, valid_mhe_loss = evaluate_model(sess, valid_model, valid_dataloader) valid_loss_summ = tf.summary.Summary() valid_loss_summ.value.add(tag='valid_loss', simple_value=float(valid_loss)) valid_loss_summ.value.add(tag='valid_ac_loss', simple_value=float(valid_ac_loss)) valid_loss_summ.value.add(tag='valid_mhe_loss', simple_value=float(valid_mhe_loss)) print("Best valid loss: %.4f, loss: %.4f, ac_loss: %.4f, mhe_loss: %.4f; valid time: %.2fs" % ( best_valid_loss, valid_loss, valid_ac_loss, valid_mhe_loss, time.time() - start)) valid_summary_writer.add_summary(valid_loss_summ, step) valid_summary_writer.flush() if valid_loss < best_valid_loss: best_valid_loss = valid_loss print("Better model, best_valid_loss: %.4f" % best_valid_loss) save_model(sess, saver, log_root, step) def trainer(npzs, args, train_GB_range, valid_GB_range): reset_graph() model = Style_Enc_Model( init_lr = args.init_lr, num_writer_per_batch=args.num_writer_per_batch, num_entry_per_writer=args.num_entry_per_writer, max_seq_len=args.max_seq_len, rnn_size=args.rnn_size, rnn_layers=args.rnn_layers, embedding_dim = args.embedding_dim, ac_softmax_m=args.ac_softmax_m, ac_softmax_s=args.ac_softmax_s, mhe_lambda=args.mhe_lambda, input_keep_prob = args.input_keep_prob, output_keep_prob = args.output_keep_prob, state_keep_prob = args.state_keep_prob) valid_model = Style_Enc_Model( init_lr = args.init_lr, num_writer_per_batch=args.num_writer_per_batch, num_entry_per_writer=args.num_entry_per_writer, max_seq_len=args.max_seq_len, rnn_size=args.rnn_size, rnn_layers=args.rnn_layers, embedding_dim = args.embedding_dim, ac_softmax_m=args.ac_softmax_m, ac_softmax_s=args.ac_softmax_s, mhe_lambda=args.mhe_lambda, input_keep_prob = 1.0, output_keep_prob = 1.0, state_keep_prob = 1.0, reuse=True, is_training=False) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) print("train data:") train_dataloader = CHN_Style_DataLoader( npzs, GB_range = train_GB_range, is_traing=True, num_writer_per_batch=args.num_writer_per_batch, num_entry_per_writer=args.num_entry_per_writer, max_seq_len=args.max_seq_len, scale_factor=200.0, # for whole data set random_scale_factor=args.random_scale_factor, # only for training augment_stroke_prob=args.augment_stroke_prob ) print("valid data:") valid_dataloader = CHN_Style_DataLoader( npzs, GB_range = valid_GB_range, is_traing=False, num_writer_per_batch=args.num_writer_per_batch, num_entry_per_writer=args.num_entry_per_writer, max_seq_len=args.max_seq_len, scale_factor=200.0, # for whole data set random_scale_factor=0.0, augment_stroke_prob=0.0 ) train(sess, model, valid_model, train_dataloader, valid_dataloader, args.log_root) def main(): parser = argparse.ArgumentParser() parser.add_argument("--init_lr", type=float, default=0.001, help="init learning rate") parser.add_argument("--num_writer_per_batch", type=int, default=64) parser.add_argument("--num_entry_per_writer", type=int, default=16) parser.add_argument("--max_seq_len", type=int, default=110) parser.add_argument("--random_scale_factor", type=float, default=0.1) parser.add_argument("--augment_stroke_prob", type=float, default=0.1) parser.add_argument("--rnn_size", type=int, default=256) parser.add_argument("--rnn_layers", type=int, default=1) parser.add_argument("--embedding_dim", type=int, default=256) parser.add_argument("--ac_softmax_m", type=float, default=0.35) parser.add_argument("--ac_softmax_s", type=int, default=30) parser.add_argument("--mhe_lambda", type=float, default=0.0) parser.add_argument("--input_keep_prob", type=float, default=1.0) parser.add_argument("--output_keep_prob", type=float, default=1.0) parser.add_argument("--state_keep_prob", type=float, default=1.0) parser.add_argument("--log_root", type=str, default="./models/demo") args = parser.parse_args() # CUDA_VISIBLE_DEVICES=3 python style_enc_train.py --rnn_layers=4 --ac_softmax_m=0.1 --log_root=./models/0107_layer4_m010 npz_10 = [os.path.join(NPZ_DIR, "%03d.npz" % n) for n in range(1, 421)] npz_11 = [os.path.join(NPZ_DIR, "%d.npz" % n) for n in range(1001, 1301)] npz_12 = [os.path.join(NPZ_DIR, "%d.npz" % n) for n in range(501, 801)] # npz_C = [os.path.join(NPZ_DIR, "C%03d-f.npz" % n) for n in range(1, 61)] npzs = npz_10 + npz_11 + npz_12 for npz in npzs: assert os.path.exists(npz) readme = "%d writers: 1.0 %d, 1.1 %d, 1.2 %d." % (len(npzs), len(npz_10), len(npz_11), len(npz_12)) print(readme) readme += "\nGB range: train(201-6763), valid(1-200)" print_save_args(args, args.log_root, readme=readme) trainer(npzs, args = args, train_GB_range=(201, 6763), valid_GB_range=(1, 200)) if __name__ == '__main__': main()
5,715
0
92
dfa14b2ec00f0ef5059bf740c1c8705161a50cb8
225
py
Python
LivroCap1/PagarAluguel.py
Lucas-py/Python-Basico02
802187be3dc948a743c5883b1d56f52163f7450d
[ "MIT" ]
null
null
null
LivroCap1/PagarAluguel.py
Lucas-py/Python-Basico02
802187be3dc948a743c5883b1d56f52163f7450d
[ "MIT" ]
null
null
null
LivroCap1/PagarAluguel.py
Lucas-py/Python-Basico02
802187be3dc948a743c5883b1d56f52163f7450d
[ "MIT" ]
null
null
null
km = float(input('digite km rodados: ')) dias = float(input('total de dias: ')) total_de_km = km * 0.15 total_de_dias = dias * 60 total_a_pagar = total_de_dias + total_de_km print(f'total a pagar e: {total_a_pagar} R$')
18.75
45
0.693333
km = float(input('digite km rodados: ')) dias = float(input('total de dias: ')) total_de_km = km * 0.15 total_de_dias = dias * 60 total_a_pagar = total_de_dias + total_de_km print(f'total a pagar e: {total_a_pagar} R$')
0
0
0
8a84843266300b75a474714ae72939c9085e1f51
31,763
py
Python
msgraph-cli-extensions/beta/usersfunctions_beta/azext_usersfunctions_beta/generated/custom.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/beta/usersfunctions_beta/azext_usersfunctions_beta/generated/custom.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/beta/usersfunctions_beta/azext_usersfunctions_beta/generated/custom.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines
50.337559
120
0.412681
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines def usersfunctions_user_activity_recent(client, user_id): return client.recent(user_id=user_id) def usersfunctions_user_calendar_calendar_view_calendar_allowed_calendar_sharing_role(client, user_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, event_id=event_id, user=user) def usersfunctions_user_calendar_calendar_view_exception_occurrence_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_calendar_view_instance_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_calendar_view_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_calendar_event_calendar_allowed_calendar_sharing_role(client, user_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, event_id=event_id, user=user) def usersfunctions_user_calendar_event_exception_occurrence_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_event_instance_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_event_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_calendar_allowed_calendar_sharing_role(client, user_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, user=user) def usersfunctions_user_calendar_group_calendar_calendar_view_calendar_allowed_calendar_sharing_role(client, user_id, calendar_group_id, calendar_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id, event_id=event_id, user=user) def usersfunctions_user_calendar_group_calendar_calendar_view_exception_occurrence_delta(client, user_id, calendar_group_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_group_calendar_calendar_view_instance_delta(client, user_id, calendar_group_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_group_calendar_calendar_view_delta(client, user_id, calendar_group_id, calendar_id): return client.delta(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id) def usersfunctions_user_calendar_group_calendar_event_calendar_allowed_calendar_sharing_role(client, user_id, calendar_group_id, calendar_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id, event_id=event_id, user=user) def usersfunctions_user_calendar_group_calendar_event_exception_occurrence_delta(client, user_id, calendar_group_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_group_calendar_event_instance_delta(client, user_id, calendar_group_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_group_calendar_event_delta(client, user_id, calendar_group_id, calendar_id): return client.delta(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id) def usersfunctions_user_calendar_group_calendar_allowed_calendar_sharing_role(client, user_id, calendar_group_id, calendar_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, calendar_group_id=calendar_group_id, calendar_id=calendar_id, user=user) def usersfunctions_user_calendar_calendar_view_calendar_allowed_calendar_sharing_role(client, user_id, calendar_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, calendar_id=calendar_id, event_id=event_id, user=user) def usersfunctions_user_calendar_calendar_view_exception_occurrence_delta(client, user_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_calendar_view_instance_delta(client, user_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_calendar_view_delta(client, user_id, calendar_id): return client.delta(user_id=user_id, calendar_id=calendar_id) def usersfunctions_user_calendar_event_calendar_allowed_calendar_sharing_role(client, user_id, calendar_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, calendar_id=calendar_id, event_id=event_id, user=user) def usersfunctions_user_calendar_event_exception_occurrence_delta(client, user_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_event_instance_delta(client, user_id, calendar_id, event_id): return client.delta(user_id=user_id, calendar_id=calendar_id, event_id=event_id) def usersfunctions_user_calendar_event_delta(client, user_id, calendar_id): return client.delta(user_id=user_id, calendar_id=calendar_id) def usersfunctions_user_calendar_allowed_calendar_sharing_role(client, user_id, calendar_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, calendar_id=calendar_id, user=user) def usersfunctions_user_calendar_view_calendar_calendar_view_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_view_calendar_event_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_view_calendar_allowed_calendar_sharing_role(client, user_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, event_id=event_id, user=user) def usersfunctions_user_calendar_view_exception_occurrence_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_view_instance_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_calendar_view_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_contact_folder_child_folder_delta(client, user_id, contact_folder_id): return client.delta(user_id=user_id, contact_folder_id=contact_folder_id) def usersfunctions_user_contact_folder_contact_delta(client, user_id, contact_folder_id): return client.delta(user_id=user_id, contact_folder_id=contact_folder_id) def usersfunctions_user_contact_folder_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_contact_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_event_calendar_calendar_view_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_event_calendar_event_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_event_calendar_allowed_calendar_sharing_role(client, user_id, event_id, user): return client.allowed_calendar_sharing_roles(user_id=user_id, event_id=event_id, user=user) def usersfunctions_user_event_exception_occurrence_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_event_instance_delta(client, user_id, event_id): return client.delta(user_id=user_id, event_id=event_id) def usersfunctions_user_event_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_mail_folder_child_folder_delta(client, user_id, mail_folder_id): return client.delta(user_id=user_id, mail_folder_id=mail_folder_id) def usersfunctions_user_mail_folder_message_delta(client, user_id, mail_folder_id): return client.delta(user_id=user_id, mail_folder_id=mail_folder_id) def usersfunctions_user_mail_folder_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_managed_app_registration_show_user_id_with_flagged_app_registration(client, user_id): return client.get_user_ids_with_flagged_app_registration(user_id=user_id) def usersfunctions_user_managed_device_show_file_vault_key(client, user_id, managed_device_id): return client.get_file_vault_key(user_id=user_id, managed_device_id=managed_device_id) def usersfunctions_user_managed_device_show_non_compliant_setting(client, user_id, managed_device_id): return client.get_non_compliant_settings(user_id=user_id, managed_device_id=managed_device_id) def usersfunctions_user_message_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_delta(client): return client.delta() def usersfunctions_user_export_device_and_app_management_data_d390(client, user_id): return client.export_device_and_app_management_data_d390(user_id=user_id) def usersfunctions_user_export_device_and_app_management_data623_c(client, user_id, skip, top): return client.export_device_and_app_management_data623_c(user_id=user_id, skip=skip, top=top) def usersfunctions_user_find_room_ac49(client, user_id, room_list): return client.find_rooms_ac49(user_id=user_id, room_list=room_list) def usersfunctions_user_find_room_d266(client, user_id): return client.find_rooms_d266(user_id=user_id) def usersfunctions_user_find_room_list(client, user_id): return client.find_room_lists(user_id=user_id) def usersfunctions_user_is_managed_app_user_blocked(client, user_id): return client.is_managed_app_user_blocked(user_id=user_id) def usersfunctions_user_reminder_view(client, user_id, start_date_time, end_date_time): return client.reminder_view(user_id=user_id, start_date_time=start_date_time, end_date_time=end_date_time) def usersfunctions_user_show_effective_device_enrollment_configuration(client, user_id): return client.get_effective_device_enrollment_configurations(user_id=user_id) def usersfunctions_user_show_logged_on_managed_device(client, user_id): return client.get_logged_on_managed_devices(user_id=user_id) def usersfunctions_user_show_managed_app_blocked_user(client): return client.get_managed_app_blocked_users() def usersfunctions_user_show_managed_app_diagnostic_statuses(client, user_id): return client.get_managed_app_diagnostic_statuses(user_id=user_id) def usersfunctions_user_show_managed_app_policy(client, user_id): return client.get_managed_app_policies(user_id=user_id) def usersfunctions_user_show_managed_device_with_app_failure(client, user_id): return client.get_managed_devices_with_app_failures(user_id=user_id) def usersfunctions_user_show_managed_device_with_failed_or_pending_app(client, user_id): return client.get_managed_devices_with_failed_or_pending_apps(user_id=user_id) def usersfunctions_user_onenote_notebook_section_group_section_page_preview(client, user_id, notebook_id, section_group_id, onenote_section_id, onenote_page_id): return client.preview(user_id=user_id, notebook_id=notebook_id, section_group_id=section_group_id, onenote_section_id=onenote_section_id, onenote_page_id=onenote_page_id) def usersfunctions_user_onenote_notebook_section_page_preview(client, user_id, notebook_id, onenote_section_id, onenote_page_id): return client.preview(user_id=user_id, notebook_id=notebook_id, onenote_section_id=onenote_section_id, onenote_page_id=onenote_page_id) def usersfunctions_user_onenote_notebook_show_recent_notebook(client, user_id, include_personal_notebooks): if include_personal_notebooks is None: include_personal_notebooks = False return client.get_recent_notebooks(user_id=user_id, include_personal_notebooks=include_personal_notebooks) def usersfunctions_user_onenote_page_preview(client, user_id, onenote_page_id): return client.preview(user_id=user_id, onenote_page_id=onenote_page_id) def usersfunctions_user_onenote_page_parent_notebook_section_group_section_page_preview(client, user_id, onenote_page_id, section_group_id, onenote_section_id, onenote_page_id1): return client.preview(user_id=user_id, onenote_page_id=onenote_page_id, section_group_id=section_group_id, onenote_section_id=onenote_section_id, onenote_page_id1=onenote_page_id1) def usersfunctions_user_onenote_page_parent_notebook_section_page_preview(client, user_id, onenote_page_id, onenote_section_id, onenote_page_id1): return client.preview(user_id=user_id, onenote_page_id=onenote_page_id, onenote_section_id=onenote_section_id, onenote_page_id1=onenote_page_id1) def usersfunctions_user_onenote_page_parent_section_page_preview(client, user_id, onenote_page_id, onenote_page_id1): return client.preview(user_id=user_id, onenote_page_id=onenote_page_id, onenote_page_id1=onenote_page_id1) def usersfunctions_user_onenote_section_group_parent_notebook_section_page_preview(client, user_id, section_group_id, onenote_section_id, onenote_page_id): return client.preview(user_id=user_id, section_group_id=section_group_id, onenote_section_id=onenote_section_id, onenote_page_id=onenote_page_id) def usersfunctions_user_onenote_section_group_section_page_preview(client, user_id, section_group_id, onenote_section_id, onenote_page_id): return client.preview(user_id=user_id, section_group_id=section_group_id, onenote_section_id=onenote_section_id, onenote_page_id=onenote_page_id) def usersfunctions_user_onenote_section_page_preview(client, user_id, onenote_section_id, onenote_page_id): return client.preview(user_id=user_id, onenote_section_id=onenote_section_id, onenote_page_id=onenote_page_id) def usersfunctions_user_outlook_supported_language(client, user_id): return client.supported_languages(user_id=user_id) def usersfunctions_user_outlook_supported_time_zone_ee48(client, user_id): return client.supported_time_zones_ee48(user_id=user_id) def usersfunctions_user_outlook_supported_time_zones51_c6(client, user_id, time_zone_standard): return client.supported_time_zones51_c6(user_id=user_id, time_zone_standard=time_zone_standard) def usersfunctions_user_planner_all_delta(client, user_id): return client.delta(user_id=user_id) def usersfunctions_user_todo_list_task_delta(client, user_id, todo_task_list_id): return client.delta(user_id=user_id, todo_task_list_id=todo_task_list_id) def usersfunctions_user_todo_list_delta(client, user_id): return client.delta(user_id=user_id)
29,048
0
2,050
2205b1d3c57e5bd6fc3104e3b2ab599b5cfe916e
12,357
py
Python
PyISY/Climate.py
sneelco/PyISY
f1f916cd7951b1b6a5235bb36444c695fe3294e1
[ "Apache-2.0" ]
2
2015-08-04T14:02:58.000Z
2016-12-15T05:54:00.000Z
PyISY/Climate.py
sneelco/PyISY
f1f916cd7951b1b6a5235bb36444c695fe3294e1
[ "Apache-2.0" ]
null
null
null
PyISY/Climate.py
sneelco/PyISY
f1f916cd7951b1b6a5235bb36444c695fe3294e1
[ "Apache-2.0" ]
null
null
null
from VarEvents import Property from VarEvents import Var from time import sleep from xml.dom import minidom class Climate(object): """ This class handles the ISY climate module. | parent: ISY class | xml: String of xml data containing the climate data :ivar Gust_Speed: Watched Variable representing the gust speed. :ivar Temperature: Watched Variable representing the temperature. :ivar Temperature_Rate: Watched Variable representing the temperature rate. :ivar Rain_Rate: Watched Variable representing the rain rate. :ivar Max_Rain_Rate: Watched Variable representing the rain rate. :ivar Temperature_High: Watched Variable representing the high temperature. :ivar Pressure_Rate: Watched variable representing the pressure rate. :ivar Wind_Speed: Watched Variable representing the wind speed. :ivar Elevation: Watched Variable representing the elevation. :ivar Dew_Point: Watched Variable representing the dew point. :ivar Wind_Average_Speed: Watched Variable representing the avg wind speed. :ivar Pressure: Watched Variable representing the pressure. :ivar Gust_Direction: Watched Variable representing the gust direction. :ivar Wind_Average_Direction: Watched Variable representing the average wind direction. :ivar Light: Watched Variable representing the amount of light. :ivar Wind_Direction: Watched Variable representing the wind direction. :ivar Humidity: Watched Variable representing the humidity. :ivar Humidity_Rate: Watched Variable representing the humidity rate. :ivar Rain_Today: Watched Variable representing the forcast rain today. :ivar Light_Rate: Watched Variable representing the light rate. :ivar Water_Deficit_Yesterday: Watched Variable representing the water deficit yesterday. :ivar Irrigation_Requirement: Watched Variable representing the irrigation requirement. :ivar Feels_Like: Watched Variable representing the feels like temperature. :ivar Temperature_Low: Watched Variable representing the low temperature. :ivar Evapotranspiration: Watched Variable representing the evapotranspiration amount. :ivar Gust_Speed_units: Gust speed units. :ivar Temperature_units: Temperature units. :ivar Temperature_Rate_units: Temperature rate units. :ivar Rain_Rate_units: Rain rate units. :ivar Max_Rain_Rate_units: Max rain rate units. :ivar Temperature_High_units: High temperature units. :ivar Pressure_Rate_units: Pressure rate units. :ivar Wind_Speed_units: Wind speed units. :ivar Elevation_units: Elevation units. :ivar Dew_Point_units: Dew point units. :ivar Wind_Average_Speed_units: Average wind speed units. :ivar Pressure_units: Pressure units. :ivar Gust_Direction_units: Gust direction units. :ivar Wind_Average_Direction_units: Average wind direction units. :ivar Light_units: Light amount units. :ivar Wind_Direction_units: Wind direction units. :ivar Humidity_units: Humidity units. :ivar Humidity_Rate_units: Humidity rate units. :ivar Rain_Today_units: Rain forecast units. :ivar Light_Rate_units: Light rate units. :ivar Water_Deficit_Yesterday_units: Water deficit units. :ivar Irrigation_Requirement_units: Irrigation requirement units. :ivar Feels_Like_units: Feels like temperature units. :ivar Temperature_Low_units: Low temperature units. :ivar Evapotranspiration_units: Evapotranspiration units. """ # Values _id2name = ['Temperature', 'Temperature_High', 'Temperature_Low', 'Feels_Like', 'Temperature_Average', 'Humidity', None, 'Pressure', None, 'Dew_Point', 'Wind_Speed', None, 'Wind_Direction', None, 'Gust_Speed', None, 'Total_Rain_Today', 'Light', None, None, None, 'Evapotranspiration', 'Irrigation_Requirement', 'Water_Deficit_Yesterday', 'Elevation', None, None, None, None, 'Average_Temperature_Tomorrow', 'High_Temperature_Tomorrow', 'Low_Temperature_Tomorrow', 'Humidity_Tomorrow', 'Wind_Speed_Tomorrow', 'Gust_Speed_Tomorrow', 'Rain_Tomorrow', 'Snow_Tomorrow', None, None, None, None, 'Forecast_Average_Temperature', 'Forecast_High_Temperature', 'Forecast_Low_Temperature', 'Forecast_Humidity', 'Forecast_Rain', 'Forecast_Snow', None, None, None, None] # value properties Temperature = Property(0, readonly=True) Temperature_High = Property(0, readonly=True) Temperature_Low = Property(0, readonly=True) Feels_Like = Property(0, readonly=True) Temperature_Average = Property(0, readonly=True) Humidity = Property(0, readonly=True) Pressure = Property(0, readonly=True) Dew_Point = Property(0, readonly=True) Wind_Speed = Property(0, readonly=True) Wind_Direction = Property(0, readonly=True) Gust_Speed = Property(0, readonly=True) Total_Rain_Today = Property(0, readonly=True) Light = Property(0, readonly=True) Evapotranspiration = Property(0, readonly=True) Irrigation_Requirement = Property(0, readonly=True) Water_Deficit_Yesterday = Property(0, readonly=True) Elevation = Property(0, readonly=True) # Coverage = Property(0, readonly=True) # Intensity = Property(0, readonly=True) # Weather_Condition = Property(0, readonly=True) # Cloud_Condition = Property(0, readonly=True) Average_Temperature_Tomorrow = Property(0, readonly=True) High_Temperature_Tomorrow = Property(0, readonly=True) Low_Temperature_Tomorrow = Property(0, readonly=True) Humidity_Tomorrow = Property(0, readonly=True) Wind_Speed_Tomorrow = Property(0, readonly=True) Gust_Speed_Tomorrow = Property(0, readonly=True) Rain_Tomorrow = Property(0, readonly=True) Snow_Tomorrow = Property(0, readonly=True) # Coverage_Tomorrow = Property(0, readonly=True) # Intensity_Tomorrow = Property(0, readonly=True) # Weather_Condition_Tomorrow = Property(0, readonly=True) # Cloud_Condition_Tomorrow = Property(0, readonly=True) Forecast_Average_Temperature = Property(0, readonly=True) Forecast_High_Temperature = Property(0, readonly=True) Forecast_Low_Temperature = Property(0, readonly=True) Forecast_Humidity = Property(0, readonly=True) Forecast_Rain = Property(0, readonly=True) Forecast_Snow = Property(0, readonly=True) # Forecast_Coverage = Property(0, readonly=True) # Forecast_Intensity = Property(0, readonly=True) # Forecast_Weather_Condition = Property(0, readonly=True) # Forecast_Cloud_Condition = Property(0, readonly=True) # unit properties Temperature_units = '' Temperature_High_units = '' Temperature_Low_units = '' Feels_Like_units = '' Temperature_Average_units = '' Humidity_units = '' Pressure_units = '' Dew_Point_units = '' Wind_Speed_units = '' Wind_Direction_units = '' Gust_Speed_units = '' Total_Rain_Today_units = '' Light_units = '' Evapotranspiration_units = '' Irrigation_Requirement_units = '' Water_Deficit_Yesterday_units = '' Elevation_units = '' # Coverage_units = '' # Intensity_units = '' # Weather_Condition_units = '' # Cloud_Condition_units = '' Average_Temperature_Tomorrow_units = '' High_Temperature_Tomorrow_units = '' Low_Temperature_Tomorrow_units = '' Humidity_Tomorrow_units = '' Wind_Speed_Tomorrow_units = '' Gust_Speed_Tomorrow_units = '' Rain_Tomorrow_units = '' Snow_Tomorrow_units = '' # Coverage_Tomorrow_units = '' # Intensity_Tomorrow_units = '' # Weather_Condition_Tomorrow_units = '' # Cloud_Condition_Tomorrow_units = '' Forecast_Average_Temperature_units = '' Forecast_High_Temperature_units = '' Forecast_Low_Temperature_units = '' Forecast_Humidity_units = '' Forecast_Rain_units = '' Forecast_Snow_units = '' # Forecast_Coverage_units = '' # Forecast_Intensity_units = '' # Forecast_Weather_Condition_units = '' # Forecast_Cloud_Condition_units = '' def __str__(self): """ Returns a string representing the climate manager. """ return 'Climate Module' def __repr__(self): """ Returns a long string showing all the climate values. """ out = 'Climate Module\n' for attr_name in dir(self): attr = getattr(self, attr_name) if isinstance(attr, Var): units = getattr(self, attr_name + '_units') out += ' ' + attr_name + ' = ' + str(attr) \ + ' ' + units + '\n' return out def parse(self, xml): """ Parses the xml data. xml: String of the xml data """ try: xmldoc = minidom.parseString(xml) except: self.parent.log.error('ISY Could not parse climate, poorly ' + 'formatted XML.') else: # parse definitions feature = xmldoc.getElementsByTagName('climate')[0] for node in feature.childNodes: (val, unit) = self._parse_val(node.firstChild.toxml()) name = node.nodeName try: prop = getattr(self, name) prop.update(val, force=True, silent=True) setattr(self, name + '_units', unit) except: pass self.parent.log.info('ISY Loaded Environment Data') def update(self, waitTime=0): """ Updates the contents of the climate class waitTime: [optional] Amount of seconds to wait before updating """ sleep(waitTime) xml = self.parent.conn.getClimate() self.parse(xml)
42.463918
81
0.62936
from VarEvents import Property from VarEvents import Var from time import sleep from xml.dom import minidom class Climate(object): """ This class handles the ISY climate module. | parent: ISY class | xml: String of xml data containing the climate data :ivar Gust_Speed: Watched Variable representing the gust speed. :ivar Temperature: Watched Variable representing the temperature. :ivar Temperature_Rate: Watched Variable representing the temperature rate. :ivar Rain_Rate: Watched Variable representing the rain rate. :ivar Max_Rain_Rate: Watched Variable representing the rain rate. :ivar Temperature_High: Watched Variable representing the high temperature. :ivar Pressure_Rate: Watched variable representing the pressure rate. :ivar Wind_Speed: Watched Variable representing the wind speed. :ivar Elevation: Watched Variable representing the elevation. :ivar Dew_Point: Watched Variable representing the dew point. :ivar Wind_Average_Speed: Watched Variable representing the avg wind speed. :ivar Pressure: Watched Variable representing the pressure. :ivar Gust_Direction: Watched Variable representing the gust direction. :ivar Wind_Average_Direction: Watched Variable representing the average wind direction. :ivar Light: Watched Variable representing the amount of light. :ivar Wind_Direction: Watched Variable representing the wind direction. :ivar Humidity: Watched Variable representing the humidity. :ivar Humidity_Rate: Watched Variable representing the humidity rate. :ivar Rain_Today: Watched Variable representing the forcast rain today. :ivar Light_Rate: Watched Variable representing the light rate. :ivar Water_Deficit_Yesterday: Watched Variable representing the water deficit yesterday. :ivar Irrigation_Requirement: Watched Variable representing the irrigation requirement. :ivar Feels_Like: Watched Variable representing the feels like temperature. :ivar Temperature_Low: Watched Variable representing the low temperature. :ivar Evapotranspiration: Watched Variable representing the evapotranspiration amount. :ivar Gust_Speed_units: Gust speed units. :ivar Temperature_units: Temperature units. :ivar Temperature_Rate_units: Temperature rate units. :ivar Rain_Rate_units: Rain rate units. :ivar Max_Rain_Rate_units: Max rain rate units. :ivar Temperature_High_units: High temperature units. :ivar Pressure_Rate_units: Pressure rate units. :ivar Wind_Speed_units: Wind speed units. :ivar Elevation_units: Elevation units. :ivar Dew_Point_units: Dew point units. :ivar Wind_Average_Speed_units: Average wind speed units. :ivar Pressure_units: Pressure units. :ivar Gust_Direction_units: Gust direction units. :ivar Wind_Average_Direction_units: Average wind direction units. :ivar Light_units: Light amount units. :ivar Wind_Direction_units: Wind direction units. :ivar Humidity_units: Humidity units. :ivar Humidity_Rate_units: Humidity rate units. :ivar Rain_Today_units: Rain forecast units. :ivar Light_Rate_units: Light rate units. :ivar Water_Deficit_Yesterday_units: Water deficit units. :ivar Irrigation_Requirement_units: Irrigation requirement units. :ivar Feels_Like_units: Feels like temperature units. :ivar Temperature_Low_units: Low temperature units. :ivar Evapotranspiration_units: Evapotranspiration units. """ # Values _id2name = ['Temperature', 'Temperature_High', 'Temperature_Low', 'Feels_Like', 'Temperature_Average', 'Humidity', None, 'Pressure', None, 'Dew_Point', 'Wind_Speed', None, 'Wind_Direction', None, 'Gust_Speed', None, 'Total_Rain_Today', 'Light', None, None, None, 'Evapotranspiration', 'Irrigation_Requirement', 'Water_Deficit_Yesterday', 'Elevation', None, None, None, None, 'Average_Temperature_Tomorrow', 'High_Temperature_Tomorrow', 'Low_Temperature_Tomorrow', 'Humidity_Tomorrow', 'Wind_Speed_Tomorrow', 'Gust_Speed_Tomorrow', 'Rain_Tomorrow', 'Snow_Tomorrow', None, None, None, None, 'Forecast_Average_Temperature', 'Forecast_High_Temperature', 'Forecast_Low_Temperature', 'Forecast_Humidity', 'Forecast_Rain', 'Forecast_Snow', None, None, None, None] # value properties Temperature = Property(0, readonly=True) Temperature_High = Property(0, readonly=True) Temperature_Low = Property(0, readonly=True) Feels_Like = Property(0, readonly=True) Temperature_Average = Property(0, readonly=True) Humidity = Property(0, readonly=True) Pressure = Property(0, readonly=True) Dew_Point = Property(0, readonly=True) Wind_Speed = Property(0, readonly=True) Wind_Direction = Property(0, readonly=True) Gust_Speed = Property(0, readonly=True) Total_Rain_Today = Property(0, readonly=True) Light = Property(0, readonly=True) Evapotranspiration = Property(0, readonly=True) Irrigation_Requirement = Property(0, readonly=True) Water_Deficit_Yesterday = Property(0, readonly=True) Elevation = Property(0, readonly=True) # Coverage = Property(0, readonly=True) # Intensity = Property(0, readonly=True) # Weather_Condition = Property(0, readonly=True) # Cloud_Condition = Property(0, readonly=True) Average_Temperature_Tomorrow = Property(0, readonly=True) High_Temperature_Tomorrow = Property(0, readonly=True) Low_Temperature_Tomorrow = Property(0, readonly=True) Humidity_Tomorrow = Property(0, readonly=True) Wind_Speed_Tomorrow = Property(0, readonly=True) Gust_Speed_Tomorrow = Property(0, readonly=True) Rain_Tomorrow = Property(0, readonly=True) Snow_Tomorrow = Property(0, readonly=True) # Coverage_Tomorrow = Property(0, readonly=True) # Intensity_Tomorrow = Property(0, readonly=True) # Weather_Condition_Tomorrow = Property(0, readonly=True) # Cloud_Condition_Tomorrow = Property(0, readonly=True) Forecast_Average_Temperature = Property(0, readonly=True) Forecast_High_Temperature = Property(0, readonly=True) Forecast_Low_Temperature = Property(0, readonly=True) Forecast_Humidity = Property(0, readonly=True) Forecast_Rain = Property(0, readonly=True) Forecast_Snow = Property(0, readonly=True) # Forecast_Coverage = Property(0, readonly=True) # Forecast_Intensity = Property(0, readonly=True) # Forecast_Weather_Condition = Property(0, readonly=True) # Forecast_Cloud_Condition = Property(0, readonly=True) # unit properties Temperature_units = '' Temperature_High_units = '' Temperature_Low_units = '' Feels_Like_units = '' Temperature_Average_units = '' Humidity_units = '' Pressure_units = '' Dew_Point_units = '' Wind_Speed_units = '' Wind_Direction_units = '' Gust_Speed_units = '' Total_Rain_Today_units = '' Light_units = '' Evapotranspiration_units = '' Irrigation_Requirement_units = '' Water_Deficit_Yesterday_units = '' Elevation_units = '' # Coverage_units = '' # Intensity_units = '' # Weather_Condition_units = '' # Cloud_Condition_units = '' Average_Temperature_Tomorrow_units = '' High_Temperature_Tomorrow_units = '' Low_Temperature_Tomorrow_units = '' Humidity_Tomorrow_units = '' Wind_Speed_Tomorrow_units = '' Gust_Speed_Tomorrow_units = '' Rain_Tomorrow_units = '' Snow_Tomorrow_units = '' # Coverage_Tomorrow_units = '' # Intensity_Tomorrow_units = '' # Weather_Condition_Tomorrow_units = '' # Cloud_Condition_Tomorrow_units = '' Forecast_Average_Temperature_units = '' Forecast_High_Temperature_units = '' Forecast_Low_Temperature_units = '' Forecast_Humidity_units = '' Forecast_Rain_units = '' Forecast_Snow_units = '' # Forecast_Coverage_units = '' # Forecast_Intensity_units = '' # Forecast_Weather_Condition_units = '' # Forecast_Cloud_Condition_units = '' def __init__(self, parent, xml=None): super(Climate, self).__init__() self.parent = parent self.parse(xml) def __str__(self): """ Returns a string representing the climate manager. """ return 'Climate Module' def __repr__(self): """ Returns a long string showing all the climate values. """ out = 'Climate Module\n' for attr_name in dir(self): attr = getattr(self, attr_name) if isinstance(attr, Var): units = getattr(self, attr_name + '_units') out += ' ' + attr_name + ' = ' + str(attr) \ + ' ' + units + '\n' return out def parse(self, xml): """ Parses the xml data. xml: String of the xml data """ try: xmldoc = minidom.parseString(xml) except: self.parent.log.error('ISY Could not parse climate, poorly ' + 'formatted XML.') else: # parse definitions feature = xmldoc.getElementsByTagName('climate')[0] for node in feature.childNodes: (val, unit) = self._parse_val(node.firstChild.toxml()) name = node.nodeName try: prop = getattr(self, name) prop.update(val, force=True, silent=True) setattr(self, name + '_units', unit) except: pass self.parent.log.info('ISY Loaded Environment Data') def _parse_val(self, val): try: # assume standard val unit combination (val, unit) = self._parse_val_num(val) except ValueError: # assume direction (val, unit) = self._parse_val_dir(val) return (val, unit) def _parse_val_num(self, val): split_val = val.split() if len(split_val) == 2: return (float(split_val[0]), split_val[1]) else: # probably elevation, assume feet return (float(split_val[0]), 'feet') def _parse_val_dir(self, val): dirs = {'N': 0., 'NNE': 22.5, 'NE': 45., 'ENE': 67.5, 'E': 90., 'ESE': 112.5, 'SE': 135., 'SSE': 157.5, 'S': 180., 'SSW': 202.5, 'SW': 225., 'WSW': 247.5, 'W': 270., 'WNW': 292.5, 'NW': 315., 'NNW': 337.5, 'N/A': None} return (dirs[val], 'deg') def update(self, waitTime=0): """ Updates the contents of the climate class waitTime: [optional] Amount of seconds to wait before updating """ sleep(waitTime) xml = self.parent.conn.getClimate() self.parse(xml) def _upmsg(self, xmldoc): cid = int(xmldoc.getElementsByTagName('action')[0] .firstChild.toxml()) - 1 val_raw = xmldoc.getElementsByTagName('value')[0] \ .firstChild.toxml().strip() unit_raw = xmldoc.getElementsByTagName('unit')[0].firstChild if unit_raw is not None: unit_raw = unit_raw.toxml().strip() else: unit_raw = '' if cid < len(self._id2name): (val, unit) = self._parse_val((val_raw + ' ' + unit_raw).strip()) cname = self._id2name[cid] if cname is not None: attr = getattr(self, cname) attr.update(val, force=True, silent=True) setattr(self, cname + '_units', unit) self.parent.log.info('ISY Updated Climate Value: ' + cname)
1,999
0
145
d5d2d48c33750918747531b040829ac393f0e6e7
4,203
py
Python
WTFUtils.py
Nierhain/WTFUtils
879eb5d9a8aea4f39524e3172f93e65f452d8819
[ "MIT" ]
null
null
null
WTFUtils.py
Nierhain/WTFUtils
879eb5d9a8aea4f39524e3172f93e65f452d8819
[ "MIT" ]
null
null
null
WTFUtils.py
Nierhain/WTFUtils
879eb5d9a8aea4f39524e3172f93e65f452d8819
[ "MIT" ]
null
null
null
from PySide2.QtCore import Qt, Slot, QDir, QSettings from PySide2.QtWidgets import QApplication, QMainWindow, QWidget, QAction, QPushButton, QFileDialog, QInputDialog, \ QLineEdit, QHBoxLayout, QVBoxLayout, QLabel import sys if __name__ == "__main__": app = QApplication(sys.argv) widget = Application() window = MainWindow(widget) window.resize(800, 600) window.show() sys.exit(app.exec_())
34.170732
119
0.678563
from PySide2.QtCore import Qt, Slot, QDir, QSettings from PySide2.QtWidgets import QApplication, QMainWindow, QWidget, QAction, QPushButton, QFileDialog, QInputDialog, \ QLineEdit, QHBoxLayout, QVBoxLayout, QLabel import sys class Application(QWidget): pathToWTF = "_retail_/WTF/Account" def __init__(self): QWidget.__init__(self) self.config = QSettings("Nierhain", "WTFUtils") self.layout = QHBoxLayout() self.quit = QPushButton("Quit") # Options self.accountname = QLineEdit(self.config.value("accountname")) self.realm = QLineEdit(self.config.value("realm")) self.character = QLineEdit(self.config.value("character")) self.wowPath = QLineEdit(self.config.value("wowPath")) self.wowPath.picker = QPushButton('Select') self.copyPath = QLineEdit(self.config.value("copyPath")) self.copyPath.picker = QPushButton('Select') self.backupPath = QLineEdit(self.config.value("backupPath")) self.backupPath.picker = QPushButton('Select') self.options = QVBoxLayout() self.options.setMargin(10) self.options.addWidget(QLabel("WoW path")) self.options.addWidget(self.wowPath) self.options.addWidget(self.wowPath.picker) self.options.addWidget(QLabel("Character settings path")) self.options.addWidget(self.copyPath) self.options.addWidget(self.copyPath.picker) self.options.addWidget(QLabel("Account name")) self.options.addWidget(self.accountname) self.options.addWidget(QLabel("Realm")) self.options.addWidget(self.realm) self.options.addWidget(QLabel("Character name")) self.options.addWidget(self.character) self.options.addWidget(QLabel("Backup folder path")) self.options.addWidget(self.backupPath) self.options.addWidget(self.backupPath.picker) self.options.addStretch() self.options.addWidget(self.quit) self.layout.addLayout(self.options) self.setLayout(self.layout) self.realm.editingFinished.connect(self.setRealm) self.quit.clicked.connect(self.quit_application) self.copyPath.picker.clicked.connect(self.setCopyPath) self.wowPath.picker.clicked.connect(self.setWowPath) self.backupPath.picker.clicked.connect(self.setBackupPath) self.character.editingFinished.connect(self.setCharacter) @Slot() def setRealm(self): self.config.setValue("realm", self.realm.text()) @Slot() def setCharacter(self): self.config.setValue("character", self.character.text()) @Slot() def setAccountname(self): self.config.setValue("accountname", self.accountname.text()) @Slot() def setCopyPath(self): self.config.setValue("copyPath", QFileDialog.getExistingDirectory(self, "select character settings directory")) self.copyPath.setText(self.config.value("copyPath")) @Slot() def setWowPath(self): self.config.setValue("wowPath", QFileDialog.getExistingDirectory(self, "select wow directory")) self.wowPath.setText(self.config.value("wowPath")) @Slot() def setBackupPath(self): self.config.setValue("backupPath", QFileDialog.getExistingDirectory(self, "select backup directory")) self.backupPath.setText(self.config.value("backupPath")) @Slot() def quit_application(self): QApplication.quit() class MainWindow(QMainWindow): def __init__(self, widget): QMainWindow.__init__(self) self.setWindowTitle("WTFUtils - by Nierhain") self.menu = self.menuBar() self.file_menu = self.menu.addMenu("File") exit_action = QAction("Exit", self) exit_action.setShortcut("Ctrl+Q") exit_action.triggered.connect(self.exit_app) self.file_menu.addAction(exit_action) self.setCentralWidget(widget) @Slot() def exit_app(self, checked): QApplication.quit() if __name__ == "__main__": app = QApplication(sys.argv) widget = Application() window = MainWindow(widget) window.resize(800, 600) window.show() sys.exit(app.exec_())
3,313
419
46
a7846b0d6899761dcc014e34e156d53e1610b615
4,461
py
Python
populationsim/steps/expand_households.py
bstabler/populationsim
872f7d26992e566c6fe75aed1cc14c8ad5f71d3a
[ "BSD-3-Clause" ]
null
null
null
populationsim/steps/expand_households.py
bstabler/populationsim
872f7d26992e566c6fe75aed1cc14c8ad5f71d3a
[ "BSD-3-Clause" ]
null
null
null
populationsim/steps/expand_households.py
bstabler/populationsim
872f7d26992e566c6fe75aed1cc14c8ad5f71d3a
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. import logging import pandas as pd import numpy as np from activitysim.core import pipeline from activitysim.core import inject from activitysim.core.config import setting from .helper import get_control_table from .helper import get_weight_table from .helper import weight_table_name logger = logging.getLogger(__name__) @inject.step() def expand_households(): """ Create a complete expanded synthetic household list with their assigned geographic zone ids. This is the skeleton synthetic household id list with no household or person attributes, one row per household, with geography columns and seed household table household_id. Creates pipeline table expanded_household_ids """ if setting('NO_INTEGERIZATION_EVER', False): logger.warning("skipping expand_households: NO_INTEGERIZATION_EVER") inject.add_table('expanded_household_ids', pd.DataFrame()) return geographies = setting('geographies') household_id_col = setting('household_id_col') low_geography = geographies[-1] # only one we really need is low_geography seed_geography = setting('seed_geography') geography_cols = geographies[geographies.index(seed_geography):] weights = get_weight_table(low_geography, sparse=True) weights = weights[geography_cols + [household_id_col, 'integer_weight']] # - expand weights table by integer_weight, so there is one row per desired hh weight_cols = weights.columns.values weights_np = np.repeat(weights.values, weights.integer_weight.values, axis=0) expanded_weights = pd.DataFrame(data=weights_np, columns=weight_cols) if setting('GROUP_BY_INCIDENCE_SIGNATURE'): # the household_id_col is really the group_id expanded_weights.rename(columns={household_id_col: 'group_id'}, inplace=True) # the original incidence table with one row per hh, with index hh_id household_groups = pipeline.get_table('household_groups') household_groups = household_groups[[household_id_col, 'group_id', 'sample_weight']] # for each group, lists of hh_ids and their sample_weights (as relative probabiliities) # [ [ [<group_0_hh_id_list>], [<group_0_hh_prob_list>] ], # [ [<group_1_hh_id_list>], [<group_1_hh_prob_list>] ], ... ] HH_IDS = 0 HH_PROBS = 1 grouper = household_groups.groupby('group_id') group_hh_probs = [0] * len(grouper) for group_id, df in grouper: hh_ids = list(df[household_id_col]) probs = list(df.sample_weight / df.sample_weight.sum()) group_hh_probs[group_id] = [hh_ids, probs] # FIXME - should sample without replacement? # now make a hh_id choice for each group_id in expanded_weights expanded_weights[household_id_col] = \ expanded_weights.group_id.apply(chooser, convert_dtype=True,) # FIXME - omit in production? del expanded_weights['group_id'] del expanded_weights['integer_weight'] append = inject.get_step_arg('append', False) replace = inject.get_step_arg('replace', False) assert not (append and replace), "can't specify both append and replace for expand_households" if append or replace: t = inject.get_table('expanded_household_ids').to_frame() prev_hhs = len(t.index) added_hhs = len(expanded_weights.index) if replace: # FIXME - should really get from crosswalk table? low_ids_to_replace = expanded_weights[low_geography].unique() t = t[~t[low_geography].isin(low_ids_to_replace)] expanded_weights = pd.concat([t, expanded_weights], ignore_index=True) dropped_hhs = prev_hhs - len(t.index) final_hhs = len(expanded_weights.index) op = 'append' if append else 'replace' logger.info("expand_households op: %s prev hh count %s dropped %s added %s final %s" % (op, prev_hhs, dropped_hhs, added_hhs, final_hhs)) repop = inject.get_step_arg('repop', default=False) inject.add_table('expanded_household_ids', expanded_weights, replace=repop)
39.131579
98
0.705447
from __future__ import division from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. import logging import pandas as pd import numpy as np from activitysim.core import pipeline from activitysim.core import inject from activitysim.core.config import setting from .helper import get_control_table from .helper import get_weight_table from .helper import weight_table_name logger = logging.getLogger(__name__) @inject.step() def expand_households(): """ Create a complete expanded synthetic household list with their assigned geographic zone ids. This is the skeleton synthetic household id list with no household or person attributes, one row per household, with geography columns and seed household table household_id. Creates pipeline table expanded_household_ids """ if setting('NO_INTEGERIZATION_EVER', False): logger.warning("skipping expand_households: NO_INTEGERIZATION_EVER") inject.add_table('expanded_household_ids', pd.DataFrame()) return geographies = setting('geographies') household_id_col = setting('household_id_col') low_geography = geographies[-1] # only one we really need is low_geography seed_geography = setting('seed_geography') geography_cols = geographies[geographies.index(seed_geography):] weights = get_weight_table(low_geography, sparse=True) weights = weights[geography_cols + [household_id_col, 'integer_weight']] # - expand weights table by integer_weight, so there is one row per desired hh weight_cols = weights.columns.values weights_np = np.repeat(weights.values, weights.integer_weight.values, axis=0) expanded_weights = pd.DataFrame(data=weights_np, columns=weight_cols) if setting('GROUP_BY_INCIDENCE_SIGNATURE'): # the household_id_col is really the group_id expanded_weights.rename(columns={household_id_col: 'group_id'}, inplace=True) # the original incidence table with one row per hh, with index hh_id household_groups = pipeline.get_table('household_groups') household_groups = household_groups[[household_id_col, 'group_id', 'sample_weight']] # for each group, lists of hh_ids and their sample_weights (as relative probabiliities) # [ [ [<group_0_hh_id_list>], [<group_0_hh_prob_list>] ], # [ [<group_1_hh_id_list>], [<group_1_hh_prob_list>] ], ... ] HH_IDS = 0 HH_PROBS = 1 grouper = household_groups.groupby('group_id') group_hh_probs = [0] * len(grouper) for group_id, df in grouper: hh_ids = list(df[household_id_col]) probs = list(df.sample_weight / df.sample_weight.sum()) group_hh_probs[group_id] = [hh_ids, probs] # FIXME - should sample without replacement? # now make a hh_id choice for each group_id in expanded_weights def chooser(group_id): hh_ids = group_hh_probs[group_id][HH_IDS] hh_probs = group_hh_probs[group_id][HH_PROBS] return np.random.choice(hh_ids, p=hh_probs) expanded_weights[household_id_col] = \ expanded_weights.group_id.apply(chooser, convert_dtype=True,) # FIXME - omit in production? del expanded_weights['group_id'] del expanded_weights['integer_weight'] append = inject.get_step_arg('append', False) replace = inject.get_step_arg('replace', False) assert not (append and replace), "can't specify both append and replace for expand_households" if append or replace: t = inject.get_table('expanded_household_ids').to_frame() prev_hhs = len(t.index) added_hhs = len(expanded_weights.index) if replace: # FIXME - should really get from crosswalk table? low_ids_to_replace = expanded_weights[low_geography].unique() t = t[~t[low_geography].isin(low_ids_to_replace)] expanded_weights = pd.concat([t, expanded_weights], ignore_index=True) dropped_hhs = prev_hhs - len(t.index) final_hhs = len(expanded_weights.index) op = 'append' if append else 'replace' logger.info("expand_households op: %s prev hh count %s dropped %s added %s final %s" % (op, prev_hhs, dropped_hhs, added_hhs, final_hhs)) repop = inject.get_step_arg('repop', default=False) inject.add_table('expanded_household_ids', expanded_weights, replace=repop)
169
0
30
489733bd7746a78851184e57f552e8596df27f96
15,828
py
Python
lib/dataset/jacquard.py
pia32/ssds.pytorch
e596ecea37942153d82122fb85ad9de3feeb2363
[ "MIT" ]
null
null
null
lib/dataset/jacquard.py
pia32/ssds.pytorch
e596ecea37942153d82122fb85ad9de3feeb2363
[ "MIT" ]
null
null
null
lib/dataset/jacquard.py
pia32/ssds.pytorch
e596ecea37942153d82122fb85ad9de3feeb2363
[ "MIT" ]
null
null
null
import os import pickle import os.path import sys import torch import torch.utils.data as data import torchvision.transforms as transforms from PIL import Image, ImageDraw, ImageFont import cv2 import numpy as np from operator import itemgetter from skimage.draw import polygon if sys.version_info[0] == 2: import xml.etree.cElementTree as ET else: import xml.etree.ElementTree as ET VOC_CLASSES = ( '__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') VOC_CLASSES = ( '__background__', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20') # for making bounding boxes pretty COLORS = ((255, 0, 0, 128), (0, 255, 0, 128), (0, 0, 255, 128), (0, 255, 255, 128), (255, 0, 255, 128), (255, 255, 0, 128)) class AnnotationTransform(object): """Transforms a VOC annotation into a Tensor of bbox coords and label index Initilized with a dictionary lookup of classnames to indexes Arguments: class_to_ind (dict, optional): dictionary lookup of classnames -> indexes (default: alphabetic indexing of VOC's 20 classes) keep_difficult (bool, optional): keep difficult instances or not (default: False) height (int): height width (int): width """ def __call__(self, target): """ Arguments: target (annotation) : the target annotation to be made usable will be an ET.Element Returns: a list containing lists of bounding boxes [bbox coords, class name] """ res = np.empty((0,5)) for obj in target.iter('object'): difficult = int(obj.find('difficult').text) == 1 if not self.keep_difficult and difficult: continue name = obj.find('name').text.lower().strip() bbox = obj.find('bndbox') pts = ['xmin', 'ymin', 'xmax', 'ymax'] bndbox = [] for i, pt in enumerate(pts): cur_pt = int(bbox.find(pt).text) - 1 # scale height or width #cur_pt = cur_pt / width if i % 2 == 0 else cur_pt / height bndbox.append(cur_pt) label_idx = self.class_to_ind[name] bndbox.append(label_idx) res = np.vstack((res,bndbox)) # [xmin, ymin, xmax, ymax, label_ind] # img_id = target.find('filename').text[:-4] return res # [[xmin, ymin, xmax, ymax, label_ind], ... ] class JACQUARDDetection(data.Dataset): """VOC Detection Dataset Object input is image, target is annotation Arguments: root (string): filepath to VOCdevkit folder. image_set (string): imageset to use (eg. 'train', 'val', 'test') transform (callable, optional): transformation to perform on the input image target_transform (callable, optional): transformation to perform on the target `annotation` (eg: take in caption string, return tensor of word indices) dataset_name (string, optional): which dataset to load (default: 'VOC2007') """ def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' img_id = self.ids[index] return cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) def pull_anno(self, index): '''Returns the original annotation of image at index Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to get annotation of Return: list: [img_id, [(label, bbox coords),...]] eg: ('001718', [('dog', (96, 13, 438, 332))]) ''' img_id = self.ids[index] anno = ET.parse(self._annopath % img_id).getroot() # gt = self.target_transform(anno, 1, 1) # gt = self.target_transform(anno) # return img_id[1], gt if self.target_transform is not None: anno = self.target_transform(anno) return anno def pull_img_anno(self, index): '''Returns the original annotation of image at index Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to get annotation of Return: list: [img_id, [(label, bbox coords),...]] eg: ('001718', [('dog', (96, 13, 438, 332))]) ''' img_id = self.ids[index] img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) anno = ET.parse(self._annopath % img_id).getroot() gt = self.target_transform(anno) height, width, _ = img.shape boxes = gt[:,:-1] labels = gt[:,-1] boxes[:, 0::2] /= width boxes[:, 1::2] /= height labels = np.expand_dims(labels,1) targets = np.hstack((boxes,labels)) return img, targets def pull_tensor(self, index): '''Returns the original image at an index in tensor form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: tensorized version of img, squeezed ''' to_tensor = transforms.ToTensor() return torch.Tensor(self.pull_image(index)).unsqueeze_(0) def evaluate_detections(self, all_boxes, output_dir=None): """ all_boxes is a list of length number-of-classes. Each list element is a list of length number-of-images. Each of those list elements is either an empty list [] or a numpy array of detection. all_boxes[class][image] = [] or np.array of shape #dets x 5 """ self._write_voc_results_file(all_boxes) aps,map = self._do_python_eval(output_dir) return aps,map def parse_rec(self, filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text # obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(obj_struct) return objects ## test # if __name__ == '__main__': # ds = VOCDetection('../../../../../dataset/VOCdevkit/', [('2012', 'train')], # None, AnnotationTransform()) # print(len(ds)) # img, target = ds[0] # print(target) # ds.show(1)
34.940397
144
0.538287
import os import pickle import os.path import sys import torch import torch.utils.data as data import torchvision.transforms as transforms from PIL import Image, ImageDraw, ImageFont import cv2 import numpy as np from operator import itemgetter from skimage.draw import polygon if sys.version_info[0] == 2: import xml.etree.cElementTree as ET else: import xml.etree.ElementTree as ET VOC_CLASSES = ( '__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') VOC_CLASSES = ( '__background__', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20') # for making bounding boxes pretty COLORS = ((255, 0, 0, 128), (0, 255, 0, 128), (0, 0, 255, 128), (0, 255, 255, 128), (255, 0, 255, 128), (255, 255, 0, 128)) class AnnotationTransform(object): """Transforms a VOC annotation into a Tensor of bbox coords and label index Initilized with a dictionary lookup of classnames to indexes Arguments: class_to_ind (dict, optional): dictionary lookup of classnames -> indexes (default: alphabetic indexing of VOC's 20 classes) keep_difficult (bool, optional): keep difficult instances or not (default: False) height (int): height width (int): width """ def __init__(self, class_to_ind=None, keep_difficult=True): self.class_to_ind = class_to_ind or dict( zip(VOC_CLASSES, range(len(VOC_CLASSES)))) self.keep_difficult = keep_difficult def __call__(self, target): """ Arguments: target (annotation) : the target annotation to be made usable will be an ET.Element Returns: a list containing lists of bounding boxes [bbox coords, class name] """ res = np.empty((0,5)) for obj in target.iter('object'): difficult = int(obj.find('difficult').text) == 1 if not self.keep_difficult and difficult: continue name = obj.find('name').text.lower().strip() bbox = obj.find('bndbox') pts = ['xmin', 'ymin', 'xmax', 'ymax'] bndbox = [] for i, pt in enumerate(pts): cur_pt = int(bbox.find(pt).text) - 1 # scale height or width #cur_pt = cur_pt / width if i % 2 == 0 else cur_pt / height bndbox.append(cur_pt) label_idx = self.class_to_ind[name] bndbox.append(label_idx) res = np.vstack((res,bndbox)) # [xmin, ymin, xmax, ymax, label_ind] # img_id = target.find('filename').text[:-4] return res # [[xmin, ymin, xmax, ymax, label_ind], ... ] class JACQUARDDetection(data.Dataset): """VOC Detection Dataset Object input is image, target is annotation Arguments: root (string): filepath to VOCdevkit folder. image_set (string): imageset to use (eg. 'train', 'val', 'test') transform (callable, optional): transformation to perform on the input image target_transform (callable, optional): transformation to perform on the target `annotation` (eg: take in caption string, return tensor of word indices) dataset_name (string, optional): which dataset to load (default: 'VOC2007') """ def __init__(self, root, image_sets, preproc=None, target_transform=AnnotationTransform(), dataset_name='VOC0712'): self.root = root self.image_set = image_sets self.preproc = preproc self.target_transform = target_transform self.name = dataset_name self._annopath = os.path.join('%s', 'Annotations', '%s.xml') self._imgpath = os.path.join('%s', 'JPEGImages', '%s.jpg') self.ids = list() for (year, name) in image_sets: self._year = year rootpath = os.path.join(self.root, 'VOC' + year) for line in open(os.path.join(rootpath, 'ImageSets', 'Main', name + '.txt')): self.ids.append((rootpath, line.strip())) def __getitem__(self, index): img_id = self.ids[index] target = ET.parse(self._annopath % img_id).getroot() img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) height, width, _ = img.shape if self.target_transform is not None: target = self.target_transform(target) if self.preproc is not None: img, target = self.preproc(img, target) #print(img.size()) # target = self.target_transform(target, width, height) #print(target.shape) return img, target def __len__(self): return len(self.ids) def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' img_id = self.ids[index] return cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) def pull_anno(self, index): '''Returns the original annotation of image at index Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to get annotation of Return: list: [img_id, [(label, bbox coords),...]] eg: ('001718', [('dog', (96, 13, 438, 332))]) ''' img_id = self.ids[index] anno = ET.parse(self._annopath % img_id).getroot() # gt = self.target_transform(anno, 1, 1) # gt = self.target_transform(anno) # return img_id[1], gt if self.target_transform is not None: anno = self.target_transform(anno) return anno def pull_img_anno(self, index): '''Returns the original annotation of image at index Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to get annotation of Return: list: [img_id, [(label, bbox coords),...]] eg: ('001718', [('dog', (96, 13, 438, 332))]) ''' img_id = self.ids[index] img = cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR) anno = ET.parse(self._annopath % img_id).getroot() gt = self.target_transform(anno) height, width, _ = img.shape boxes = gt[:,:-1] labels = gt[:,-1] boxes[:, 0::2] /= width boxes[:, 1::2] /= height labels = np.expand_dims(labels,1) targets = np.hstack((boxes,labels)) return img, targets def pull_tensor(self, index): '''Returns the original image at an index in tensor form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: tensorized version of img, squeezed ''' to_tensor = transforms.ToTensor() return torch.Tensor(self.pull_image(index)).unsqueeze_(0) def evaluate_detections(self, all_boxes, output_dir=None): """ all_boxes is a list of length number-of-classes. Each list element is a list of length number-of-images. Each of those list elements is either an empty list [] or a numpy array of detection. all_boxes[class][image] = [] or np.array of shape #dets x 5 """ self._write_voc_results_file(all_boxes) aps,map = self._do_python_eval(output_dir) return aps,map def _get_voc_results_file_template(self): filename = 'comp4_det_test' + '_{:s}.txt' filedir = os.path.join( self.root, 'results', 'VOC' + self._year, 'Main') if not os.path.exists(filedir): os.makedirs(filedir) path = os.path.join(filedir, filename) return path def _write_voc_results_file(self, all_boxes): for cls_ind, cls in enumerate(VOC_CLASSES): cls_ind = cls_ind if cls == '__background__': continue print('Writing {} VOC results file'.format(cls)) filename = self._get_voc_results_file_template().format(cls) with open(filename, 'wt') as f: for im_ind, index in enumerate(self.ids): index = index[1] dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in range(dets.shape[0]): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index, dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1)) def _do_python_eval(self, output_dir='output'): rootpath = os.path.join(self.root, 'VOC' + self._year) name = self.image_set[0][1] annopath = os.path.join( rootpath, 'Annotations', '{:s}.xml') imagesetfile = os.path.join( rootpath, 'ImageSets', 'Main', name+'.txt') cachedir = os.path.join(self.root, 'annotations_cache') aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = True if int(self._year) < 2010 else False print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) if output_dir is not None and not os.path.isdir(output_dir): os.mkdir(output_dir) detDB = {} for i, cls in enumerate(VOC_CLASSES): if cls == '__background__': continue filename = self._get_voc_results_file_template().format(cls) detfile = filename.format(cls) with open(detfile, 'r') as f: lines = f.readlines() splitlines = [x.strip().split(' ') for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) for j in range(len(image_ids)): im_loc = image_ids[j] conf_loc = confidence[j] bb_loc = BB[j, :] if im_loc not in detDB: detDB[im_loc] = [] bb_entry = [conf_loc, int(cls), bb_loc[0], bb_loc[1], bb_loc[2], bb_loc[3]] #confidence, class, xmin, ymin, xmax, ymax detDB[im_loc].append(bb_entry) with open(imagesetfile, 'r') as f: lines = f.readlines() imagenames = [x.strip() for x in lines] total = 0 suc = 0 for im in imagenames:#foreach image if im not in detDB: print("No detections for image", im) continue bbDB = sorted(detDB[im], key=itemgetter(0), reverse=True) bestBB = bbDB[0] gtbbs = self.parse_rec(annopath.format(im)) max_iou = self.calc_max_iou(bestBB, gtbbs) total += 1 if max_iou > 0.25: suc += 1 if total % 100 == 0: print(suc, total, suc/total) acc = suc / total print("FINAL ACCURACY", acc) return acc, acc def bb_to_corners(self, bb, angle_classes = 19): corners = np.zeros((4, 2)) x = (bb[4] + bb[2]) / 2.0 y = (bb[5] + bb[3]) / 2.0 width = bb[4] - bb[2] height = bb[5] - bb[3] angle = (bb[1] - 1) / angle_classes * np.pi corners = np.zeros((4, 2)); corners[0, 0] = -width / 2; corners[0, 1] = height / 2; corners[1, 0] = width / 2; corners[1, 1] = height / 2; corners[2, 0] = width / 2; corners[2, 1] = -height / 2; corners[3, 0] = -width / 2; corners[3, 1] = -height / 2; rot = [[np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]] corners = np.dot(corners, rot) corners = corners + np.array([x, y]) return corners, angle def calc_max_iou(self, bb, gtbbs, visualize=False): max_iou = 0 corners1, angle1 = self.bb_to_corners(bb) if visualize: img = np.zeros((1024, 1024, 3), np.uint8) self.cv2corners(img, corners1, color=(0, 255, 0)) for i in range(len(gtbbs)): gtbb = gtbbs[i] gtbb = [1, int(gtbb['name']), gtbb['bbox'][0], gtbb['bbox'][1], gtbb['bbox'][2], gtbb['bbox'][3]] corners2, angle2 = self.bb_to_corners(gtbb) if visualize: self.cv2corners(img, corners2) if abs(angle2 - angle1) > np.pi / 6: continue iou = self.calc_iou(corners1, corners2) max_iou = max(iou, max_iou) if visualize: print(max_iou) cv2.imshow('result', img) cv2.waitKey(0) return max_iou def calc_iou(self, corners1, corners2): rr1, cc1 = polygon(corners1[:, 0], corners1[:, 1]) rr2, cc2 = polygon(corners2[:, 0], corners2[:, 1]) try: r_max = max(rr1.max(), rr2.max()) + 1 c_max = max(cc1.max(), cc2.max()) + 1 except: return 0 canvas = np.zeros((r_max, c_max)) canvas[rr1, cc1] += 1 canvas[rr2, cc2] += 1 union = np.sum(canvas > 0) if union == 0: return 0 intersection = np.sum(canvas == 2) return intersection * 1.0 / union def cv2corners(self, img, corners, color=(255, 0, 0)): for i in range(4): nextI = (i + 1) % 4 c1 = (int(corners[i, 0]), int(corners[i, 1])) c2 = (int(corners[nextI, 0]), int(corners[nextI, 1])) cv2.line(img, c1, c2, color, 3) def parse_rec(self, filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text # obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)] objects.append(obj_struct) return objects def show(self, index): img, target = self.__getitem__(index) for obj in target: obj = obj.astype(np.int) cv2.rectangle(img, (obj[0], obj[1]), (obj[2], obj[3]), (255,0,0), 3) cv2.imwrite('./image.jpg', img) ## test # if __name__ == '__main__': # ds = VOCDetection('../../../../../dataset/VOCdevkit/', [('2012', 'train')], # None, AnnotationTransform()) # print(len(ds)) # img, target = ds[0] # print(target) # ds.show(1)
8,002
0
324
de9e357b7df8fea8daf14e222029818e3e784ecd
1,254
py
Python
recognition_plate_licenses.py
mezgoodle/opencv-tutorial
76f4e7f9002eb8f8e4879167aee670faa32c7b7c
[ "MIT" ]
1
2021-11-11T17:03:21.000Z
2021-11-11T17:03:21.000Z
recognition_plate_licenses.py
mezgoodle/opencv-tutorial
76f4e7f9002eb8f8e4879167aee670faa32c7b7c
[ "MIT" ]
1
2021-08-16T13:32:59.000Z
2021-08-17T09:25:13.000Z
recognition_plate_licenses.py
mezgoodle/opencv-tutorial
76f4e7f9002eb8f8e4879167aee670faa32c7b7c
[ "MIT" ]
null
null
null
import cv2 import numpy as np import imutils import easyocr from matplotlib import pyplot as plt image = cv2.imread('images/license.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image_filter = cv2.bilateralFilter(gray, 11, 15, 15) edges = cv2.Canny(image_filter, 30, 200) contours = cv2.findContours(edges.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours = imutils.grab_contours(contours) contours = sorted(contours, key=cv2.contourArea, reverse=True) position = None for contour in contours: approx = cv2.approxPolyDP(contour, 10, True) number_of_edges = 4 if len(approx) == number_of_edges: position = approx break mask = np.zeros(gray.shape, np.uint8) new_image = cv2.drawContours(mask, [position], 0, 255, -1) bitwise_image = cv2.bitwise_and(image, image, mask=mask) x, y = np.where(mask == 255) x1, y1 = np.min(x), np.min(y) x2, y2 = np.max(x), np.max(y) crop = gray[x1:x2, y1:y2] text = easyocr.Reader(['en']) text = text.readtext(crop) result = text[0][-2] final_image = cv2.putText(image, result, (x1, y2 + 60), cv2.FONT_HERSHEY_PLAIN, 3, (0, 0, 255), 1) final_image = cv2.rectangle(image, (x1, x2), (y1, y2), (0, 255, 0), 1) plt.imshow(cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)) plt.show()
29.162791
98
0.707337
import cv2 import numpy as np import imutils import easyocr from matplotlib import pyplot as plt image = cv2.imread('images/license.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image_filter = cv2.bilateralFilter(gray, 11, 15, 15) edges = cv2.Canny(image_filter, 30, 200) contours = cv2.findContours(edges.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours = imutils.grab_contours(contours) contours = sorted(contours, key=cv2.contourArea, reverse=True) position = None for contour in contours: approx = cv2.approxPolyDP(contour, 10, True) number_of_edges = 4 if len(approx) == number_of_edges: position = approx break mask = np.zeros(gray.shape, np.uint8) new_image = cv2.drawContours(mask, [position], 0, 255, -1) bitwise_image = cv2.bitwise_and(image, image, mask=mask) x, y = np.where(mask == 255) x1, y1 = np.min(x), np.min(y) x2, y2 = np.max(x), np.max(y) crop = gray[x1:x2, y1:y2] text = easyocr.Reader(['en']) text = text.readtext(crop) result = text[0][-2] final_image = cv2.putText(image, result, (x1, y2 + 60), cv2.FONT_HERSHEY_PLAIN, 3, (0, 0, 255), 1) final_image = cv2.rectangle(image, (x1, x2), (y1, y2), (0, 255, 0), 1) plt.imshow(cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)) plt.show()
0
0
0
4bef42c0e917472e68a30cc758cdbfa6221dd7f3
1,108
py
Python
Fibonacci.py
Carloselrecharlie/Fiboncacci_sequence
a28cc61b35775dee2489fd07d676348200377660
[ "Apache-2.0" ]
null
null
null
Fibonacci.py
Carloselrecharlie/Fiboncacci_sequence
a28cc61b35775dee2489fd07d676348200377660
[ "Apache-2.0" ]
null
null
null
Fibonacci.py
Carloselrecharlie/Fiboncacci_sequence
a28cc61b35775dee2489fd07d676348200377660
[ "Apache-2.0" ]
null
null
null
# Carlos Montes Parra # A program that displays a number from the Fibonacci sequence. The position # in the sequence is linked to the first and last letter of the user's name # and the addition of their Unicode values. # Adapted from one of Ian McLoughlin's lectures https://github.com/ianmcloughlin/python-fib/blob/master/fibname.py name = "Montes" first = name[0] last = name[-1] firstN = ord(first) lastN = ord(last) x = firstN + lastN ans = fib(x) print("My surname is", name) print("The first letter", first, "is number", firstN) print("The last letter", last, "is number", lastN) print("Fibonacci number", x, "is", ans) # SOLUTION # My surname is Montes # The first letter M is number 77 # The last letter s is number 115 # Fibonacci number 192 is 5972304273877744135569338397692020533504 # ord () is a python built-in function which returns the Unicode value linked to a one-character string. It's the opposite of chr() or unichr()
24.622222
143
0.700361
# Carlos Montes Parra # A program that displays a number from the Fibonacci sequence. The position # in the sequence is linked to the first and last letter of the user's name # and the addition of their Unicode values. # Adapted from one of Ian McLoughlin's lectures https://github.com/ianmcloughlin/python-fib/blob/master/fibname.py def fib(n): # This function returns the nth Fibonacci number i = 0 j = 1 n = n - 1 while n >= 0: i, j = j, i + j n = n - 1 return i name = "Montes" first = name[0] last = name[-1] firstN = ord(first) lastN = ord(last) x = firstN + lastN ans = fib(x) print("My surname is", name) print("The first letter", first, "is number", firstN) print("The last letter", last, "is number", lastN) print("Fibonacci number", x, "is", ans) # SOLUTION # My surname is Montes # The first letter M is number 77 # The last letter s is number 115 # Fibonacci number 192 is 5972304273877744135569338397692020533504 # ord () is a python built-in function which returns the Unicode value linked to a one-character string. It's the opposite of chr() or unichr()
134
0
23
2255ee9719fac77ef535168206a055deff41e616
1,991
py
Python
results/get_xflickrco_many.py
danoneata/iglue
c4db972bc67f83f325a847093906b924503ccfc4
[ "MIT" ]
15
2022-01-28T03:08:46.000Z
2022-03-24T09:24:07.000Z
results/get_xflickrco_many.py
danoneata/iglue
c4db972bc67f83f325a847093906b924503ccfc4
[ "MIT" ]
4
2022-03-01T19:13:39.000Z
2022-03-27T08:21:46.000Z
results/get_xflickrco_many.py
danoneata/iglue
c4db972bc67f83f325a847093906b924503ccfc4
[ "MIT" ]
2
2022-02-05T17:04:42.000Z
2022-03-11T14:52:47.000Z
import os import argparse import numpy as np import pandas as pd TASK = "xflickrco" LANGS = ['de', 'ja'] SHOTS = [200, 500, 1000, 1500, '100x5', '200x5'] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--models', type=str) parser.add_argument('--exp_dir', type=str) parser.add_argument('--version', type=str, default=None) args = parser.parse_args() version = f".{args.version}" if args.version is not None else "" exp_dir = args.exp_dir + version models = args.models.split(",") for shot in SHOTS: res_ir_df = pd.DataFrame(columns=['model']+LANGS) res_tr_df = pd.DataFrame(columns=['model']+LANGS) for model in models: res_ir = dict() res_tr = dict() res_ir['model'] = model res_tr['model'] = model for lang in LANGS: fn = os.path.join(exp_dir, model, TASK, lang, str(shot), f"test.out") try: lines = [l.strip() for l in open(fn).readlines() if l.startswith("Final")] #[-1] ir1 = float(lines[-2].split()[1].split(",")[0].split(':')[1]) tr1 = float(lines[-1].split()[1].split(",")[0].split(':')[1]) res_ir[lang] = ir1 res_tr[lang] = tr1 except: print(fn) res_ir[lang] = -1.0 res_tr[lang] = -1.0 # avg_ir = np.mean([res_ir[lang] for lang in LANGS]) # avg_tr = np.mean([res_tr[lang] for lang in LANGS]) # res_ir['avg'] = avg_ir # res_tr['avg'] = avg_tr res_ir_df = res_ir_df.append(res_ir, ignore_index=True) res_tr_df = res_tr_df.append(res_tr, ignore_index=True) res_ir_df.to_csv(f"{TASK}/xFlickrCO-many_ir_{shot}{version}.csv", index=False) res_tr_df.to_csv(f"{TASK}/xFlickrCO-many_tr_{shot}{version}.csv", index=False)
38.288462
100
0.542943
import os import argparse import numpy as np import pandas as pd TASK = "xflickrco" LANGS = ['de', 'ja'] SHOTS = [200, 500, 1000, 1500, '100x5', '200x5'] if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--models', type=str) parser.add_argument('--exp_dir', type=str) parser.add_argument('--version', type=str, default=None) args = parser.parse_args() version = f".{args.version}" if args.version is not None else "" exp_dir = args.exp_dir + version models = args.models.split(",") for shot in SHOTS: res_ir_df = pd.DataFrame(columns=['model']+LANGS) res_tr_df = pd.DataFrame(columns=['model']+LANGS) for model in models: res_ir = dict() res_tr = dict() res_ir['model'] = model res_tr['model'] = model for lang in LANGS: fn = os.path.join(exp_dir, model, TASK, lang, str(shot), f"test.out") try: lines = [l.strip() for l in open(fn).readlines() if l.startswith("Final")] #[-1] ir1 = float(lines[-2].split()[1].split(",")[0].split(':')[1]) tr1 = float(lines[-1].split()[1].split(",")[0].split(':')[1]) res_ir[lang] = ir1 res_tr[lang] = tr1 except: print(fn) res_ir[lang] = -1.0 res_tr[lang] = -1.0 # avg_ir = np.mean([res_ir[lang] for lang in LANGS]) # avg_tr = np.mean([res_tr[lang] for lang in LANGS]) # res_ir['avg'] = avg_ir # res_tr['avg'] = avg_tr res_ir_df = res_ir_df.append(res_ir, ignore_index=True) res_tr_df = res_tr_df.append(res_tr, ignore_index=True) res_ir_df.to_csv(f"{TASK}/xFlickrCO-many_ir_{shot}{version}.csv", index=False) res_tr_df.to_csv(f"{TASK}/xFlickrCO-many_tr_{shot}{version}.csv", index=False)
0
0
0
4d2480f5a7dd624715e75d6e800820d479ea0649
241
py
Python
line_graph_2.py
kethan1/Scipy-Python
1f260ed12f0923dc044ee74a28d35cc1e6f6f821
[ "MIT" ]
null
null
null
line_graph_2.py
kethan1/Scipy-Python
1f260ed12f0923dc044ee74a28d35cc1e6f6f821
[ "MIT" ]
null
null
null
line_graph_2.py
kethan1/Scipy-Python
1f260ed12f0923dc044ee74a28d35cc1e6f6f821
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np plt.plot(list(index for index, y in enumerate(get_coords())), list(y for y in get_coords()), "y-.s") plt.show()
20.083333
100
0.643154
import matplotlib.pyplot as plt import numpy as np def get_coords(): for x in range(1, 11): yield x**2 - 3*x + 9 plt.plot(list(index for index, y in enumerate(get_coords())), list(y for y in get_coords()), "y-.s") plt.show()
52
0
23
7b6ad7b68b1168b3c953cf0cc2a54b22b5266807
538
py
Python
quati/dataset/fields/affixes.py
onenoc/quati
ba372b2ad14076294af62cbcbc27e1b3ca8421c1
[ "MIT" ]
2
2021-01-30T21:20:36.000Z
2021-01-30T22:15:07.000Z
quati/dataset/fields/affixes.py
onenoc/quati
ba372b2ad14076294af62cbcbc27e1b3ca8421c1
[ "MIT" ]
null
null
null
quati/dataset/fields/affixes.py
onenoc/quati
ba372b2ad14076294af62cbcbc27e1b3ca8421c1
[ "MIT" ]
1
2021-01-18T23:12:18.000Z
2021-01-18T23:12:18.000Z
from torchtext.data import Field from quati import constants from quati.dataset.vocabulary import Vocabulary class AffixesField(Field): """ Defines a field for affixes (prefixes and suffixes) by setting only unk_token and pad_token to their default constant value. """
26.9
71
0.630112
from torchtext.data import Field from quati import constants from quati.dataset.vocabulary import Vocabulary class AffixesField(Field): """ Defines a field for affixes (prefixes and suffixes) by setting only unk_token and pad_token to their default constant value. """ def __init__(self, **kwargs): super().__init__(unk_token=constants.UNK, pad_token=constants.PAD, batch_first=True, **kwargs) self.vocab_cls = Vocabulary
222
0
26
8cb03c84a3e95c4b0475a50e2e10afbcec7f2753
7,452
py
Python
afka/afk.py
FlorianLudwig/afka
4efaf7f461e0f79827b3c138059ff01cb7088ff6
[ "Apache-2.0" ]
3
2020-12-23T21:46:38.000Z
2021-01-11T19:23:57.000Z
afka/afk.py
FlorianLudwig/afka
4efaf7f461e0f79827b3c138059ff01cb7088ff6
[ "Apache-2.0" ]
null
null
null
afka/afk.py
FlorianLudwig/afka
4efaf7f461e0f79827b3c138059ff01cb7088ff6
[ "Apache-2.0" ]
null
null
null
"""Interface to the game""" import anre import time import enum import logging import pkg_resources logging.basicConfig(level=logging.INFO) LOG = logging.getLogger(__name__) AVOID_DOUBLE_TAB_DELAY = 0.1
34.183486
97
0.621981
"""Interface to the game""" import anre import time import enum import logging import pkg_resources class MainScreen(enum.Enum): RANHORN = "ranhorn" DARK_FOREST = "dark_forest" CAMPAIGN = "campaign" HEROS = "heros" CHAT = "chat" class Screen(enum.Enum): MAIL = "mail" BAG = "bag" FRIENDS = "friends" QUESTS_DAILIES = "quests_dailies" QUESTS_WEEKLY = "quests_weekly" QUESTS_CAMPAIGN = "quests_campaign" BOUNTY_QUESTS = "bounty_quests" BOUNTY_TEAM = "bounty_team" logging.basicConfig(level=logging.INFO) LOG = logging.getLogger(__name__) AVOID_DOUBLE_TAB_DELAY = 0.1 class AFKArena: def __init__(self, ar: anre.Anre) -> None: self.ar = ar self.activity_name = "com.lilithgame.hgame.gp" self.current_screen = MainScreen.CAMPAIGN def start_app(self): self.ar.start_app(self.activity_name) def close_app(self): self.ar.close_app(self.activity_name) def wait_until_loaded(self): LOG.info("waiting till app is loaded") while self.ar.get_pixel("50%", -1, update=True) != (242, 225, 145): time.sleep(0.1) LOG.info("afk arena done loading") def switch_to(self, target): LOG.debug("switch from %s to %s", self.current_screen, target) if self.current_screen == target: return main_screens = { MainScreen.RANHORN: "10%", MainScreen.DARK_FOREST: "30%", MainScreen.CAMPAIGN: "50%", MainScreen.HEROS: "70%", MainScreen.CHAT: "90%", } if target == Screen.FRIENDS: self.switch_to(MainScreen.CAMPAIGN) self.click_all_image("menu_arrow") self.tap_image("friends") elif target == Screen.MAIL: self.switch_to(MainScreen.CAMPAIGN) self.click_all_image("menu_arrow", timeout=3) self.tap_image("mail") elif target == "guild": self.switch_to(MainScreen.RANHORN) self.ar.tap("30%", "15%") time.sleep(AVOID_DOUBLE_TAB_DELAY) elif target == Screen.QUESTS_DAILIES: self.switch_to(MainScreen.CAMPAIGN) self.tap_image("quests") time.sleep(AVOID_DOUBLE_TAB_DELAY) elif target == Screen.BOUNTY_QUESTS: self.switch_to(MainScreen.DARK_FOREST) self.tap_image("bounty_board") time.sleep(AVOID_DOUBLE_TAB_DELAY) elif target == "guild_hunting": self.switch_to("guild") self.tap_image("guild_hunting") elif target in main_screens: # we want to go to one of the main screens, ensure there # is no back button visible (meaning we are in one of the) # subscreens self.click_all_image("back", timeout=5) x = main_screens[target] self.ar.tap(x, -10) else: raise AttributeError(f"Unkown screen '{target}'") # TODO verify we successfully reached desired screen self.current_screen = target def tap_image(self, image_name, scale=1.0, threshold=0.9, timeout=60): collect = pkg_resources.resource_filename("afka", f"res/{image_name}.png") return self.ar.tap_image(collect, scale=scale, threshold=threshold, timeout=timeout) def find_image(self, image_name, scale=1.0): collect = pkg_resources.resource_filename("afka", f"res/{image_name}.png") return self.ar.find_image(collect, scale=scale) def wait_for_image(self, image_name, scale=1.0, timeout=60, threshold=0.9): collect = pkg_resources.resource_filename("afka", f"res/{image_name}.png") return self.ar.wait_for_image(collect, timeout=timeout, threshold=threshold, scale=scale) def loot_afk_chest(self): LOG.info("starting loot_afk_chest") self.switch_to(MainScreen.CAMPAIGN) self.ar.tap("50%", -450) # tap on pile of loot self.tap_image("blue_button") # tap collect button time.sleep(AVOID_DOUBLE_TAB_DELAY) LOG.info("done loot_afk_chest") def loot_fast_rewards(self, spend_diamonds=False): LOG.info("starting loot_fast_rewards") self.switch_to(MainScreen.CAMPAIGN) self.tap_image("fast_rewards") self.wait_for_image("popup") conf, x, y = self.find_image("collect_for_50") if conf >= 0.8: if spend_diamonds: self.ar.tap(x, y) else: LOG.info("fast rewards only available for diamonds and spend_diamonds=False") self.ar.tap(10, 10) time.sleep(AVOID_DOUBLE_TAB_DELAY) LOG.info("done loot_fast_rewards") return else: self.tap_image("collect_yellow") time.sleep(AVOID_DOUBLE_TAB_DELAY) self.ar.tap(10, 10) time.sleep(AVOID_DOUBLE_TAB_DELAY) self.ar.tap(10, 10) time.sleep(AVOID_DOUBLE_TAB_DELAY) LOG.info("done loot_fast_rewards") def friends_send_and_receive(self): LOG.info("starting friends_send_and_receive") self.switch_to(Screen.FRIENDS) # tap Send & Receive button self.tap_image("and") LOG.info("done friends_send_and_receive") def collect_mail(self): LOG.info("starting collect_mail") self.switch_to(Screen.MAIL) self.tap_image("blue_button") LOG.info("done collect_mail") def guild_hunt(self): LOG.info("starting guild_hunt") self.switch_to("guild_hunting") for _ in range(2): try: self.tap_image("guild_hunt_challenge", timeout=10) # start challenge except ValueError: print("Looks like guild hunting already done") break time.sleep(0.1) self.tap_image("guild_hunt_challenge") # begin battle (confirms formation) time.sleep(60) self.tap_image("tap_to_close") self.tap_image("tap_to_close") LOG.info("done guild_hunt") def click_all_image(self, image_name, scale=1.0, threshold=0.9, timeout=5): LOG.debug("Click all %s images", image_name) while True: self.ar.update_screencap() try: self.tap_image(image_name, scale=scale, threshold=threshold, timeout=timeout) except ValueError: return def collect_quest_rewards(self): LOG.info("starting collect_quest_rewards") self.switch_to(Screen.QUESTS_DAILIES) self.click_all_image("blue_button", threshold=0.7, scale=0.85) self.click_all_image("quest_reward", threshold=0.7, scale=0.85) # self.switch_to(Screen.QUESTS_DAILIES) # self.switch_to("quests_campaign") LOG.info("done collect_quest_rewards") def fight_campaign(self): LOG.info("starting fight_campaign") self.switch_to(MainScreen.CAMPAIGN) self.tap_image("guild_hunt_challenge") # begin battle time.sleep(1) self.ar.update_screencap() self.tap_image("guild_hunt_challenge") # begin battle (confirms formation) self.tap_image("touch_screen_to_continue", timeout=160) self.tap_image("touch_screen_to_continue", timeout=10) LOG.info("done collect_quest_rewards") def close(self): self.ar.close()
6,333
364
535
b15752d7594b80ee0f099a7a48c0f2d982a29ae8
1,379
py
Python
glazier/lib/file_util_test.py
ofek/glazier
9f2a7ef98594fb61b5f3d368ea3c97294ed3a54b
[ "Apache-2.0" ]
null
null
null
glazier/lib/file_util_test.py
ofek/glazier
9f2a7ef98594fb61b5f3d368ea3c97294ed3a54b
[ "Apache-2.0" ]
null
null
null
glazier/lib/file_util_test.py
ofek/glazier
9f2a7ef98594fb61b5f3d368ea3c97294ed3a54b
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for glazier.lib.file_util.""" from pyfakefs import fake_filesystem from glazier.lib import file_util from absl.testing import absltest if __name__ == '__main__': absltest.main()
34.475
74
0.750544
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for glazier.lib.file_util.""" from pyfakefs import fake_filesystem from glazier.lib import file_util from absl.testing import absltest class FileUtilTest(absltest.TestCase): def setUp(self): super(FileUtilTest, self).setUp() self.filesystem = fake_filesystem.FakeFilesystem() file_util.os = fake_filesystem.FakeOsModule(self.filesystem) file_util.open = fake_filesystem.FakeFileOpen(self.filesystem) def testCreateDirectories(self): self.filesystem.CreateFile('/test') self.assertRaises(file_util.Error, file_util.CreateDirectories, '/test/file.txt') file_util.CreateDirectories('/tmp/test/path/file.log') self.assertTrue(self.filesystem.Exists('/tmp/test/path')) if __name__ == '__main__': absltest.main()
500
17
73
8539f395aacbb82d340e074717bfd772bb0e27e1
16,779
py
Python
py/test/testing/acceptance_test.py
woodrow/pyoac
b5dc59e6a38e7912db47f26fb23ffa4764a3c0e7
[ "MIT" ]
1
2019-05-27T00:58:46.000Z
2019-05-27T00:58:46.000Z
py/test/testing/acceptance_test.py
woodrow/pyoac
b5dc59e6a38e7912db47f26fb23ffa4764a3c0e7
[ "MIT" ]
null
null
null
py/test/testing/acceptance_test.py
woodrow/pyoac
b5dc59e6a38e7912db47f26fb23ffa4764a3c0e7
[ "MIT" ]
null
null
null
import py pydir = py.path.local(py.__file__).dirpath() pytestpath = pydir.join("bin", "py.test") EXPECTTIMEOUT=10.0
33.558
92
0.484236
import py pydir = py.path.local(py.__file__).dirpath() pytestpath = pydir.join("bin", "py.test") EXPECTTIMEOUT=10.0 class TestGeneralUsage: def test_config_error(self, testdir): testdir.makeconftest(""" class ConftestPlugin: def pytest_configure(self, config): raise config.Error("hello") """) result = testdir.runpytest(testdir.tmpdir) assert result.ret != 0 assert result.stderr.fnmatch_lines([ '*ERROR: hello' ]) def test_basetemp(self, testdir): mytemp = testdir.tmpdir.mkdir("mytemp") p = testdir.makepyfile(""" import py def test_1(): py.test.ensuretemp('xyz') """) result = testdir.runpytest(p, '--basetemp=%s' %mytemp) assert result.ret == 0 assert mytemp.join('xyz').check(dir=1) def test_assertion_magic(self, testdir): p = testdir.makepyfile(""" def test_this(): x = 0 assert x """) result = testdir.runpytest(p) extra = result.stdout.fnmatch_lines([ "> assert x", "E assert 0", ]) assert result.ret == 1 def test_collectonly_simple(self, testdir): p = testdir.makepyfile(""" def test_func1(): pass class TestClass: def test_method(self): pass """) result = testdir.runpytest("--collectonly", p) stderr = result.stderr.str().strip() assert stderr.startswith("inserting into sys.path") assert result.ret == 0 extra = result.stdout.fnmatch_lines(py.code.Source(""" <Module '*.py'> <Function 'test_func1'*> <Class 'TestClass'> <Instance '()'> <Function 'test_method'*> """).strip()) def test_collectonly_error(self, testdir): p = testdir.makepyfile("import Errlkjqweqwe") result = testdir.runpytest("--collectonly", p) stderr = result.stderr.str().strip() assert stderr.startswith("inserting into sys.path") assert result.ret == 1 extra = result.stdout.fnmatch_lines(py.code.Source(""" <Module '*.py'> *ImportError* !!!*failures*!!! *test_collectonly_error.py:1* """).strip()) def test_nested_import_error(self, testdir): p = testdir.makepyfile(""" import import_fails def test_this(): assert import_fails.a == 1 """) testdir.makepyfile(import_fails="import does_not_work") result = testdir.runpytest(p) extra = result.stdout.fnmatch_lines([ "> import import_fails", "E ImportError: No module named does_not_work", ]) assert result.ret == 1 def test_skipped_reasons(self, testdir): testdir.makepyfile( test_one=""" from conftest import doskip def setup_function(func): doskip() def test_func(): pass class TestClass: def test_method(self): doskip() """, test_two = """ from conftest import doskip doskip() """, conftest = """ import py def doskip(): py.test.skip('test') """ ) result = testdir.runpytest() extra = result.stdout.fnmatch_lines([ "*test_one.py ss", "*test_two.py S", "___* skipped test summary *_", "*conftest.py:3: *3* Skipped: 'test'", ]) assert result.ret == 0 def test_deselected(self, testdir): testpath = testdir.makepyfile(""" def test_one(): pass def test_two(): pass def test_three(): pass """ ) result = testdir.runpytest("-k", "test_two:", testpath) extra = result.stdout.fnmatch_lines([ "*test_deselected.py ..", "=* 1 test*deselected by 'test_two:'*=", ]) assert result.ret == 0 def test_no_skip_summary_if_failure(self, testdir): testdir.makepyfile(""" import py def test_ok(): pass def test_fail(): assert 0 def test_skip(): py.test.skip("dontshow") """) result = testdir.runpytest() assert result.stdout.str().find("skip test summary") == -1 assert result.ret == 1 def test_passes(self, testdir): p1 = testdir.makepyfile(""" def test_passes(): pass class TestClass: def test_method(self): pass """) old = p1.dirpath().chdir() try: result = testdir.runpytest() finally: old.chdir() extra = result.stdout.fnmatch_lines([ "test_passes.py ..", "* 2 pass*", ]) assert result.ret == 0 def test_header_trailer_info(self, testdir): p1 = testdir.makepyfile(""" def test_passes(): pass """) result = testdir.runpytest() verinfo = ".".join(map(str, py.std.sys.version_info[:3])) extra = result.stdout.fnmatch_lines([ "*===== test session starts ====*", "python: platform %s -- Python %s*" %( py.std.sys.platform, verinfo), # , py.std.sys.executable), "*test_header_trailer_info.py .", "=* 1 passed in *.[0-9][0-9] seconds *=", ]) def test_traceback_failure(self, testdir): p1 = testdir.makepyfile(""" def g(): return 2 def f(x): assert x == g() def test_onefails(): f(3) """) result = testdir.runpytest(p1) result.stdout.fnmatch_lines([ "*test_traceback_failure.py F", "====* FAILURES *====", "____*____", "", " def test_onefails():", "> f(3)", "", "*test_*.py:6: ", "_ _ _ *", #"", " def f(x):", "> assert x == g()", "E assert 3 == 2", "E + where 2 = g()", "", "*test_traceback_failure.py:4: AssertionError" ]) def test_capturing_outerr(self, testdir): p1 = testdir.makepyfile(""" import sys def test_capturing(): print 42 print >>sys.stderr, 23 def test_capturing_error(): print 1 print >>sys.stderr, 2 raise ValueError """) result = testdir.runpytest(p1) result.stdout.fnmatch_lines([ "*test_capturing_outerr.py .F", "====* FAILURES *====", "____*____", "*test_capturing_outerr.py:8: ValueError", "*--- Captured stdout ---*", "1", "*--- Captured stderr ---*", "2", ]) def test_showlocals(self, testdir): p1 = testdir.makepyfile(""" def test_showlocals(): x = 3 y = "x" * 5000 assert 0 """) result = testdir.runpytest(p1, '-l') result.stdout.fnmatch_lines([ #"_ _ * Locals *", "x* = 3", "y* = 'xxxxxx*" ]) def test_verbose_reporting(self, testdir): p1 = testdir.makepyfile(""" import py def test_fail(): raise ValueError() def test_pass(): pass class TestClass: def test_skip(self): py.test.skip("hello") def test_gen(): def check(x): assert x == 1 yield check, 0 """) result = testdir.runpytest(p1, '-v') result.stdout.fnmatch_lines([ "*test_verbose_reporting.py:2: test_fail*FAIL*", "*test_verbose_reporting.py:4: test_pass*PASS*", "*test_verbose_reporting.py:7: TestClass.test_skip*SKIP*", "*test_verbose_reporting.py:10: test_gen*FAIL*", ]) assert result.ret == 1 result = testdir.runpytest(p1, '-v', '-n 1') result.stdout.fnmatch_lines([ "*FAIL*test_verbose_reporting.py:2: test_fail*", ]) assert result.ret == 1 class TestDistribution: def test_dist_conftest_options(self, testdir): p1 = testdir.tmpdir.ensure("dir", 'p1.py') p1.dirpath("__init__.py").write("") p1.dirpath("conftest.py").write(py.code.Source(""" print "importing conftest", __file__ import py Option = py.test.config.Option option = py.test.config.addoptions("someopt", Option('--someopt', action="store_true", dest="someopt", default=False)) dist_rsync_roots = ['../dir'] print "added options", option print "config file seen from conftest", py.test.config """)) p1.write(py.code.Source(""" import py, conftest def test_1(): print "config from test_1", py.test.config print "conftest from test_1", conftest.__file__ print "test_1: py.test.config.option.someopt", py.test.config.option.someopt print "test_1: conftest", conftest print "test_1: conftest.option.someopt", conftest.option.someopt assert conftest.option.someopt """)) result = testdir.runpytest('-d', '--tx=popen', p1, '--someopt') assert result.ret == 0 extra = result.stdout.fnmatch_lines([ "*1 passed*", ]) def test_manytests_to_one_popen(self, testdir): p1 = testdir.makepyfile(""" import py def test_fail0(): assert 0 def test_fail1(): raise ValueError() def test_ok(): pass def test_skip(): py.test.skip("hello") """, ) result = testdir.runpytest(p1, '-d', '--tx=popen', '--tx=popen') result.stdout.fnmatch_lines([ "*1*popen*Python*", "*2*popen*Python*", "*2 failed, 1 passed, 1 skipped*", ]) assert result.ret == 1 def test_dist_conftest_specified(self, testdir): p1 = testdir.makepyfile(""" import py def test_fail0(): assert 0 def test_fail1(): raise ValueError() def test_ok(): pass def test_skip(): py.test.skip("hello") """, ) testdir.makeconftest(""" pytest_option_tx = 'popen popen popen'.split() """) result = testdir.runpytest(p1, '-d') result.stdout.fnmatch_lines([ "*1*popen*Python*", "*2*popen*Python*", "*3*popen*Python*", "*2 failed, 1 passed, 1 skipped*", ]) assert result.ret == 1 def test_dist_tests_with_crash(self, testdir): if not hasattr(py.std.os, 'kill'): py.test.skip("no os.kill") p1 = testdir.makepyfile(""" import py def test_fail0(): assert 0 def test_fail1(): raise ValueError() def test_ok(): pass def test_skip(): py.test.skip("hello") def test_crash(): import time import os time.sleep(0.5) os.kill(os.getpid(), 15) """ ) result = testdir.runpytest(p1, '-d', '--tx=3*popen') result.stdout.fnmatch_lines([ "*popen*Python*", "*popen*Python*", "*popen*Python*", "*node down*", "*3 failed, 1 passed, 1 skipped*" ]) assert result.ret == 1 def test_distribution_rsyncdirs_example(self, testdir): source = testdir.mkdir("source") dest = testdir.mkdir("dest") subdir = source.mkdir("example_pkg") subdir.ensure("__init__.py") p = subdir.join("test_one.py") p.write("def test_5(): assert not __file__.startswith(%r)" % str(p)) result = testdir.runpytest("-d", "--rsyncdir=%(subdir)s" % locals(), "--tx=popen//chdir=%(dest)s" % locals(), p) assert result.ret == 0 result.stdout.fnmatch_lines([ "*1* *popen*platform*", #"RSyncStart: [G1]", #"RSyncFinished: [G1]", "*1 passed*" ]) assert dest.join(subdir.basename).check(dir=1) def test_dist_each(self, testdir): interpreters = [] for name in ("python2.4", "python2.5"): interp = py.path.local.sysfind(name) if interp is None: py.test.skip("%s not found" % name) interpreters.append(interp) testdir.makepyfile(__init__="", test_one=""" import sys def test_hello(): print "%s...%s" % sys.version_info[:2] assert 0 """) args = ["--dist=each"] args += ["--tx", "popen//python=%s" % interpreters[0]] args += ["--tx", "popen//python=%s" % interpreters[1]] result = testdir.runpytest(*args) result.stdout.fnmatch_lines(["2...4"]) result.stdout.fnmatch_lines(["2...5"]) class TestInteractive: def getspawn(self, tmpdir): pexpect = py.test.importorskip("pexpect") basetemp = tmpdir.mkdir("basetemp") def spawn(cmd): cmd = cmd + " --basetemp=" + str(basetemp) return pexpect.spawn(cmd, logfile=tmpdir.join("spawn.out").open("w")) return spawn def requirespexpect(self, version_needed): pexpect = py.test.importorskip("pexpect") ver = tuple(map(int, pexpect.__version__.split("."))) if ver < version_needed: py.test.skip("pexpect version %s needed" %(".".join(map(str, version_needed)))) def test_pdb_interaction(self, testdir): self.requirespexpect((2,3)) spawn = self.getspawn(testdir.tmpdir) p1 = testdir.makepyfile(""" def test_1(): i = 0 assert i == 1 """) child = spawn("%s %s --pdb %s" % (py.std.sys.executable, pytestpath, p1)) child.timeout = EXPECTTIMEOUT #child.expect(".*def test_1.*") child.expect(".*i = 0.*") child.expect("(Pdb)") child.sendeof() child.expect("1 failed") if child.isalive(): child.wait() def test_simple_looponfail_interaction(self, testdir): spawn = self.getspawn(testdir.tmpdir) p1 = testdir.makepyfile(""" def test_1(): assert 1 == 0 """) p1.setmtime(p1.mtime() - 50.0) child = spawn("%s %s --looponfail %s" % (py.std.sys.executable, pytestpath, p1)) child.timeout = EXPECTTIMEOUT child.expect("assert 1 == 0") child.expect("test_simple_looponfail_interaction.py:") child.expect("1 failed") child.expect("waiting for changes") p1.write(py.code.Source(""" def test_1(): assert 1 == 1 """)) child.expect("MODIFIED.*test_simple_looponfail_interaction.py", timeout=4.0) child.expect("1 passed", timeout=5.0) child.kill(15) class TestKeyboardInterrupt: def test_raised_in_testfunction(self, testdir): p1 = testdir.makepyfile(""" import py def test_fail(): raise ValueError() def test_inter(): raise KeyboardInterrupt() """) result = testdir.runpytest(p1) result.stdout.fnmatch_lines([ #"*test_inter() INTERRUPTED", "*KEYBOARD INTERRUPT*", "*1 failed*", ])
15,826
12
821
8e9bc7828805b397069b874d1e34c619691420e9
438
py
Python
0019.remove_nth_from_end/solution.py
WZMJ/Algorithms
07f648541d38e24df38bda469665c12df6a50637
[ "MIT" ]
5
2020-05-23T02:18:26.000Z
2021-07-05T05:36:01.000Z
0019.remove_nth_from_end/solution.py
WZMJ/Algorithms
07f648541d38e24df38bda469665c12df6a50637
[ "MIT" ]
1
2020-06-10T07:17:24.000Z
2020-07-20T02:21:24.000Z
0019.remove_nth_from_end/solution.py
WZMJ/Algorithms
07f648541d38e24df38bda469665c12df6a50637
[ "MIT" ]
1
2019-04-23T13:01:50.000Z
2019-04-23T13:01:50.000Z
from utils import ListNode
24.333333
70
0.531963
from utils import ListNode class Solution: def remove_nth_from_end(self, head: ListNode, n: int) -> ListNode: if not head: return ans = ListNode(0) ans.next = head fast, slow = ans, ans for _ in range(n + 1): fast = fast.next while fast.next: fast = fast.next slow = slow.next slow.next = slow.next.next return ans.next
367
-6
49
f8c6f04cdc8ad4766b5acd9b10988424b0f57589
698
py
Python
services/backend/thiamsu/migrations/0011_auto_20171124_1827.py
LKKTGB/thiamsu
f08d453c6b35c801c57f2501e42565da56900814
[ "MIT" ]
10
2020-08-25T08:57:36.000Z
2021-12-31T01:04:18.000Z
services/backend/thiamsu/migrations/0011_auto_20171124_1827.py
LKKTGB/thiamsu
f08d453c6b35c801c57f2501e42565da56900814
[ "MIT" ]
13
2020-04-26T08:41:30.000Z
2021-06-10T17:34:25.000Z
services/backend/thiamsu/migrations/0011_auto_20171124_1827.py
LKKTGB/thiamsu
f08d453c6b35c801c57f2501e42565da56900814
[ "MIT" ]
1
2020-09-06T17:54:13.000Z
2020-09-06T17:54:13.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-11-24 18:27 from __future__ import unicode_literals from django.db import migrations
33.238095
85
0.706304
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-11-24 18:27 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [("thiamsu", "0010_auto_20171124_1825")] operations = [ migrations.AlterUniqueTogether( name="approvedtranslation", unique_together=set([]) ), migrations.RemoveField(model_name="approvedtranslation", name="reviewer"), migrations.RemoveField(model_name="approvedtranslation", name="song"), migrations.RemoveField(model_name="approvedtranslation", name="translation"), migrations.DeleteModel(name="ApprovedTranslation"), ]
0
527
23
1194c5f3a7614e6cd136e63d1b858bc694041838
2,655
py
Python
main.py
lperepol/PhylumNematoda
7d173f5d4dd8ecd0707af0e05333bdce9a873348
[ "CC0-1.0" ]
null
null
null
main.py
lperepol/PhylumNematoda
7d173f5d4dd8ecd0707af0e05333bdce9a873348
[ "CC0-1.0" ]
null
null
null
main.py
lperepol/PhylumNematoda
7d173f5d4dd8ecd0707af0e05333bdce9a873348
[ "CC0-1.0" ]
null
null
null
# This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. from graphviz import Digraph # Press the green button in the gutter to run the script. if __name__ == '__main__': main() # See PyCharm help at https://www.jetbrains.com/help/pycharm/
45
131
0.695669
# This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. from graphviz import Digraph def draw(): g = Digraph('Nematoda Key', comment="FOO",filename = 'NematodaKey.gv')#, node_attr={'color': 'lightblue2', 'style': 'filled'} ) g.graph_attr['rankdir'] = 'LR' g.node('001', label='Phylum\nNematoda',fillcolor='red',style="filled") g.node('Class\nChromadorea', shape='doubleoctagon', color='blue', fillcolor='aquamarine3',style="rounded,filled") g.node('Class\nEnoplea', shape='doubleoctagon', color='blue', fillcolor='aquamarine3',style="rounded,filled") g.edge('001','Amphids') g.edge('001','Cuticle') g.edge('001','Phasmids') g.edge('001','Esophagus') g.edge('001','Excretory\nSystem') g.edge('001','Females') g.edge('001','Caudal\nAlae') g.edge('001','Males') g.edge('Amphids','Class\nChromadorea', label='Labial\npost-labial\npore-like\nslit-like\nelaborate coils\nspirals') g.edge('Cuticle','Class\nChromadorea', label='annulated\nornamented with\nprojections and setae.') g.edge('Phasmids','Class\nChromadorea', label='Distinct\nor indistinct\nposterior') g.edge('Esophagus','Class\nChromadorea', label='Divided into bulbs\n3 to 5 esophageal glands') g.edge('Excretory\nSystem','Class\nChromadorea', label='Glandular\nor tubular.') g.edge('Females','Class\nChromadorea', label='One or\n two ovaries.') g.edge('Caudal\nAlae','Class\nChromadorea', label='Present or\nabsent') g.edge('Amphids','Class\nEnoplea', label='Pocket like\nnot spiral\npost-labial') g.edge('Cuticle','Class\nEnoplea', label='Smooth or\nfinely striated') g.edge('Phasmids','Class\nEnoplea', label='Present or\nabsent') g.edge('Esophagus','Class\nEnoplea', label='Cylindrical or bottle-shaped\n3 to 5 esophageal glands\nstichosome\nor trophosome') g.edge('Excretory\nSystem','Class\nEnoplea', label='Simple non-tubular\nSingle cell') g.edge('Females','Class\nEnoplea', label='Two ovaries') g.edge('Males','Class\nEnoplea', label='Two testes.') g.edge('Caudal\nAlae','Class\nEnoplea', label='Rare') g.render('NematodaKey.gv', format='svg', view=True) g.render('NematodaKey.gv', format='jpg', view=False) g.render('NematodaKey.gv', format='pdf', view=False) def main(): # Use a breakpoint in the code line below to debug your script. draw() # Press the green button in the gutter to run the script. if __name__ == '__main__': main() # See PyCharm help at https://www.jetbrains.com/help/pycharm/
2,224
0
45
83dd62b4bbf11a4bce1f327715899650e6158812
9,611
py
Python
gen2-mjpeg-streaming/main.py
joey1442/depthai-experiments
de2843812c4232a462eb8ab1703e7fd904f6f7b8
[ "MIT" ]
1
2022-01-14T13:59:55.000Z
2022-01-14T13:59:55.000Z
gen2-mjpeg-streaming/main.py
joey1442/depthai-experiments
de2843812c4232a462eb8ab1703e7fd904f6f7b8
[ "MIT" ]
null
null
null
gen2-mjpeg-streaming/main.py
joey1442/depthai-experiments
de2843812c4232a462eb8ab1703e7fd904f6f7b8
[ "MIT" ]
2
2022-02-14T13:41:09.000Z
2022-03-03T00:46:21.000Z
import json import socketserver import threading import time from http.server import BaseHTTPRequestHandler, HTTPServer from io import BytesIO from pathlib import Path import sys from socketserver import ThreadingMixIn from time import sleep import depthai as dai import numpy as np import cv2 from PIL import Image import blobconverter HTTP_SERVER_PORT = 8090 # HTTPServer MJPEG class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" pass # start TCP data server server_TCP = socketserver.TCPServer(('localhost', 8070), TCPServerRequest) th = threading.Thread(target=server_TCP.serve_forever) th.daemon = True th.start() # start MJPEG HTTP Server server_HTTP = ThreadedHTTPServer(('localhost', HTTP_SERVER_PORT), VideoStreamHandler) th2 = threading.Thread(target=server_HTTP.serve_forever) th2.daemon = True th2.start() # MobilenetSSD label texts labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] syncNN = True # Pipeline is defined, now we can connect to the device with dai.Device(dai.OpenVINO.Version.VERSION_2021_2) as device: cams = device.getConnectedCameras() depth_enabled = dai.CameraBoardSocket.LEFT in cams and dai.CameraBoardSocket.RIGHT in cams # Start pipeline device.startPipeline(create_pipeline(depth_enabled)) print(f"DepthAI is up & running. Navigate to 'localhost:{str(HTTP_SERVER_PORT)}' with Chrome to see the mjpeg stream") # Output queues will be used to get the rgb frames and nn data from the outputs defined above previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False) detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False) if depth_enabled: xoutBoundingBoxDepthMapping = device.getOutputQueue(name="boundingBoxDepthMapping", maxSize=4, blocking=False) depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False) frame = None detections = [] startTime = time.monotonic() counter = 0 fps = 0 color = (255, 255, 255) while True: inPreview = previewQueue.get() frame = inPreview.getCvFrame() inNN = detectionNNQueue.get() detections = inNN.detections counter+=1 current_time = time.monotonic() if (current_time - startTime) > 1 : fps = counter / (current_time - startTime) counter = 0 startTime = current_time if depth_enabled: depth = depthQueue.get() depthFrame = depth.getFrame() depthFrameColor = cv2.normalize(depthFrame, None, 255, 0, cv2.NORM_INF, cv2.CV_8UC1) depthFrameColor = cv2.equalizeHist(depthFrameColor) depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT) if len(detections) != 0: boundingBoxMapping = xoutBoundingBoxDepthMapping.get() roiDatas = boundingBoxMapping.getConfigData() for roiData in roiDatas: roi = roiData.roi roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0]) topLeft = roi.topLeft() bottomRight = roi.bottomRight() xmin = int(topLeft.x) ymin = int(topLeft.y) xmax = int(bottomRight.x) ymax = int(bottomRight.y) cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, cv2.FONT_HERSHEY_SCRIPT_SIMPLEX) # If the frame is available, draw bounding boxes on it and show the frame height = frame.shape[0] width = frame.shape[1] for detection in detections: # Denormalize bounding box x1 = int(detection.xmin * width) x2 = int(detection.xmax * width) y1 = int(detection.ymin * height) y2 = int(detection.ymax * height) try: label = labelMap[detection.label] except: label = detection.label cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.putText(frame, "{:.2f}".format(detection.confidence*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) if depth_enabled: cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX) server_TCP.datatosend = str(label) + "," + f"{int(detection.confidence * 100)}%" cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color) if depth_enabled: new_width = int(depthFrameColor.shape[1] * (frame.shape[0] / depthFrameColor.shape[0])) stacked = np.hstack([frame, cv2.resize(depthFrameColor, (new_width, frame.shape[0]))]) cv2.imshow("stacked", stacked) server_HTTP.frametosend = stacked else: cv2.imshow("frame", frame) server_HTTP.frametosend = frame if cv2.waitKey(1) == ord('q'): break
39.879668
229
0.663511
import json import socketserver import threading import time from http.server import BaseHTTPRequestHandler, HTTPServer from io import BytesIO from pathlib import Path import sys from socketserver import ThreadingMixIn from time import sleep import depthai as dai import numpy as np import cv2 from PIL import Image import blobconverter HTTP_SERVER_PORT = 8090 class TCPServerRequest(socketserver.BaseRequestHandler): def handle(self): # Handle is called each time a client is connected # When OpenDataCam connects, do not return - instead keep the connection open and keep streaming data # First send HTTP header header = 'HTTP/1.0 200 OK\r\nServer: Mozarella/2.2\r\nAccept-Range: bytes\r\nConnection: close\r\nMax-Age: 0\r\nExpires: 0\r\nCache-Control: no-cache, private\r\nPragma: no-cache\r\nContent-Type: application/json\r\n\r\n' self.request.send(header.encode()) while True: sleep(0.1) if hasattr(self.server, 'datatosend'): self.request.send(self.server.datatosend.encode() + "\r\n".encode()) # HTTPServer MJPEG class VideoStreamHandler(BaseHTTPRequestHandler): def do_GET(self): self.send_response(200) self.send_header('Content-type', 'multipart/x-mixed-replace; boundary=--jpgboundary') self.end_headers() while True: sleep(0.1) if hasattr(self.server, 'frametosend'): image = Image.fromarray(cv2.cvtColor(self.server.frametosend, cv2.COLOR_BGR2RGB)) stream_file = BytesIO() image.save(stream_file, 'JPEG') self.wfile.write("--jpgboundary".encode()) self.send_header('Content-type', 'image/jpeg') self.send_header('Content-length', str(stream_file.getbuffer().nbytes)) self.end_headers() image.save(self.wfile, 'JPEG') class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): """Handle requests in a separate thread.""" pass # start TCP data server server_TCP = socketserver.TCPServer(('localhost', 8070), TCPServerRequest) th = threading.Thread(target=server_TCP.serve_forever) th.daemon = True th.start() # start MJPEG HTTP Server server_HTTP = ThreadedHTTPServer(('localhost', HTTP_SERVER_PORT), VideoStreamHandler) th2 = threading.Thread(target=server_HTTP.serve_forever) th2.daemon = True th2.start() # MobilenetSSD label texts labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] syncNN = True def create_pipeline(depth): # Start defining a pipeline pipeline = dai.Pipeline() pipeline.setOpenVINOVersion(version=dai.OpenVINO.Version.VERSION_2021_2) # Define a source - color camera colorCam = pipeline.createColorCamera() if depth: mobilenet = pipeline.createMobileNetSpatialDetectionNetwork() monoLeft = pipeline.createMonoCamera() monoRight = pipeline.createMonoCamera() stereo = pipeline.createStereoDepth() else: mobilenet = pipeline.createMobileNetDetectionNetwork() colorCam.setPreviewSize(300, 300) colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P) colorCam.setInterleaved(False) colorCam.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR) mobilenet.setBlobPath(blobconverter.from_zoo("mobilenet-ssd", shaves=6, version="2021.2")) mobilenet.setConfidenceThreshold(0.5) mobilenet.input.setBlocking(False) if depth: monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P) monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT) monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P) monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT) # Setting node configs stereo.initialConfig.setConfidenceThreshold(255) stereo.depth.link(mobilenet.inputDepth) mobilenet.setBoundingBoxScaleFactor(0.5) mobilenet.setDepthLowerThreshold(100) mobilenet.setDepthUpperThreshold(5000) monoLeft.out.link(stereo.left) monoRight.out.link(stereo.right) xoutRgb = pipeline.createXLinkOut() xoutRgb.setStreamName("rgb") colorCam.preview.link(mobilenet.input) if syncNN: mobilenet.passthrough.link(xoutRgb.input) else: colorCam.preview.link(xoutRgb.input) xoutNN = pipeline.createXLinkOut() xoutNN.setStreamName("detections") mobilenet.out.link(xoutNN.input) if depth: xoutBoundingBoxDepthMapping = pipeline.createXLinkOut() xoutBoundingBoxDepthMapping.setStreamName("boundingBoxDepthMapping") mobilenet.boundingBoxMapping.link(xoutBoundingBoxDepthMapping.input) xoutDepth = pipeline.createXLinkOut() xoutDepth.setStreamName("depth") mobilenet.passthroughDepth.link(xoutDepth.input) return pipeline # Pipeline is defined, now we can connect to the device with dai.Device(dai.OpenVINO.Version.VERSION_2021_2) as device: cams = device.getConnectedCameras() depth_enabled = dai.CameraBoardSocket.LEFT in cams and dai.CameraBoardSocket.RIGHT in cams # Start pipeline device.startPipeline(create_pipeline(depth_enabled)) print(f"DepthAI is up & running. Navigate to 'localhost:{str(HTTP_SERVER_PORT)}' with Chrome to see the mjpeg stream") # Output queues will be used to get the rgb frames and nn data from the outputs defined above previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False) detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False) if depth_enabled: xoutBoundingBoxDepthMapping = device.getOutputQueue(name="boundingBoxDepthMapping", maxSize=4, blocking=False) depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False) frame = None detections = [] startTime = time.monotonic() counter = 0 fps = 0 color = (255, 255, 255) while True: inPreview = previewQueue.get() frame = inPreview.getCvFrame() inNN = detectionNNQueue.get() detections = inNN.detections counter+=1 current_time = time.monotonic() if (current_time - startTime) > 1 : fps = counter / (current_time - startTime) counter = 0 startTime = current_time if depth_enabled: depth = depthQueue.get() depthFrame = depth.getFrame() depthFrameColor = cv2.normalize(depthFrame, None, 255, 0, cv2.NORM_INF, cv2.CV_8UC1) depthFrameColor = cv2.equalizeHist(depthFrameColor) depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT) if len(detections) != 0: boundingBoxMapping = xoutBoundingBoxDepthMapping.get() roiDatas = boundingBoxMapping.getConfigData() for roiData in roiDatas: roi = roiData.roi roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0]) topLeft = roi.topLeft() bottomRight = roi.bottomRight() xmin = int(topLeft.x) ymin = int(topLeft.y) xmax = int(bottomRight.x) ymax = int(bottomRight.y) cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, cv2.FONT_HERSHEY_SCRIPT_SIMPLEX) # If the frame is available, draw bounding boxes on it and show the frame height = frame.shape[0] width = frame.shape[1] for detection in detections: # Denormalize bounding box x1 = int(detection.xmin * width) x2 = int(detection.xmax * width) y1 = int(detection.ymin * height) y2 = int(detection.ymax * height) try: label = labelMap[detection.label] except: label = detection.label cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.putText(frame, "{:.2f}".format(detection.confidence*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) if depth_enabled: cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color) cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX) server_TCP.datatosend = str(label) + "," + f"{int(detection.confidence * 100)}%" cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color) if depth_enabled: new_width = int(depthFrameColor.shape[1] * (frame.shape[0] / depthFrameColor.shape[0])) stacked = np.hstack([frame, cv2.resize(depthFrameColor, (new_width, frame.shape[0]))]) cv2.imshow("stacked", stacked) server_HTTP.frametosend = stacked else: cv2.imshow("frame", frame) server_HTTP.frametosend = frame if cv2.waitKey(1) == ord('q'): break
3,719
63
120
90dd2a31d9dd176635170ae37809f983dea5ff2a
5,241
py
Python
rbi2/inte5c.py
spottedzebra/interpreter
b5b2a735d771fbfe2842e4c36176f2bc8c1761c3
[ "MIT" ]
2
2016-10-22T11:55:07.000Z
2020-07-23T20:56:15.000Z
rbi2/inte5c.py
mwhit74/interpreter
b5b2a735d771fbfe2842e4c36176f2bc8c1761c3
[ "MIT" ]
null
null
null
rbi2/inte5c.py
mwhit74/interpreter
b5b2a735d771fbfe2842e4c36176f2bc8c1761c3
[ "MIT" ]
null
null
null
import string import pdb from collections import namedtuple import math ADD, SUB, MUL, DIV, CHAR = 'ADD','SUB','MUL','DIV','CHAR' NUM, EOF, OPAR, CPAR, POW = 'NUM','EOF','OPAR','CPAR','POW' WHITESPACE = string.whitespace Token = namedtuple('Token',['token_type', 'token_value']) if __name__ == "__main__": main()
27.296875
68
0.526045
import string import pdb from collections import namedtuple import math ADD, SUB, MUL, DIV, CHAR = 'ADD','SUB','MUL','DIV','CHAR' NUM, EOF, OPAR, CPAR, POW = 'NUM','EOF','OPAR','CPAR','POW' WHITESPACE = string.whitespace Token = namedtuple('Token',['token_type', 'token_value']) class Lexer(object): def __init__(self, text): self.text = text self.pos = 0 self.cur_char = self.text[self.pos] def error(self): raise ValueError('Invalid character') def get_next_char(self): self.pos += 1 if self.pos <= len(self.text) - 1: self.cur_char = self.text[self.pos] else: self.cur_char = None def get_whitespace(self): value = '' while self.cur_char != None and self.cur_char in WHITESPACE: value = value + self.cur_char self.get_next_char() def get_num(self): value = '' while self.cur_char != None and self.cur_char.isdigit(): value = value + self.cur_char self.get_next_char() return int(value) def get_chars(self): value = '' while self.cur_char != None and self.cur_char.isalpha(): value = value + self.cur_char self.get_next_char() return value def get_next_token(self): while self.cur_char != None: if self.cur_char in WHITESPACE: value = self.get_whitespace() if self.cur_char.isdigit(): value = self.get_num() return Token(NUM, value) if self.cur_char.isalpha(): value = self.get_chars() return Token(CHAR, value) if self.cur_char == '+': token = Token(ADD, self.cur_char) self.get_next_char() return token if self.cur_char == '-': token = Token(SUB, self.cur_char) self.get_next_char() return token if self.cur_char == '*': token = Token(MUL, self.cur_char) self.get_next_char() return token if self.cur_char == '/': token = Token(DIV, self.cur_char) self.get_next_char() return token if self.cur_char == '(': token = Token(OPAR, self.cur_char) self.get_next_char() return token if self.cur_char == ')': token = Token(CPAR, self.cur_char) self.get_next_char() return token if self.cur_char == '^': token = Token(POW, self.cur_char) self.get_next_char() return token self.error() return Token(EOF, None) class Interpreter(object): def __init__(self, lexer): self.lexer = lexer self.cur_token = self.lexer.get_next_token() def error(self): raise SyntaxError('Invalid syntax') def check_token_type(self, token_type): print(self.cur_token) #pdb.set_trace() if self.cur_token.token_type == token_type: self.cur_token = self.lexer.get_next_token() else: self.error() def expr1(self): result = self.expr2() while (self.cur_token.token_type != EOF and self.cur_token.token_type in (ADD, SUB)): if self.cur_token.token_type == ADD: self.check_token_type(ADD) result = result + self.expr2() if self.cur_token.token_type == SUB: self.check_token_type(SUB) result = result - self.expr2() return result def expr2(self): result = self.expr3() while (self.cur_token.token_type != EOF and self.cur_token.token_type in (MUL, DIV)): if self.cur_token.token_type == MUL: self.check_token_type(MUL) result = result * self.expr3() if self.cur_token.token_type == DIV: self.check_token_type(DIV) result = result / self.expr3() return result def expr3(self): if self.cur_token.token_type == OPAR: self.check_token_type(OPAR) result = self.expr1() self.check_token_type(CPAR) else: result = self.expr4() return result def expr4(self): result = self.factor() while (self.cur_token.token_type != EOF and self.cur_token.token_type is POW): self.check_token_type(POW) result = math.pow(result, self.expr1()) return result def factor(self): value = self.cur_token.token_value self.check_token_type(NUM) return value def main(): while True: try: text = input('calc>') except e: continue #pdb.set_trace() lexer = Lexer(text) interpreter = Interpreter(lexer) result = interpreter.expr1() print(result) if __name__ == "__main__": main()
4,433
4
482
a40403bf837c949fa8d93de759b6d0eca24abb41
2,932
py
Python
pwf/response.py
victorkohler/pwf
67f3c5990a12ce95377e953f3a96487ebd8bdce6
[ "MIT" ]
1
2017-03-19T13:22:50.000Z
2017-03-19T13:22:50.000Z
pwf/response.py
victorkohler/pwf
67f3c5990a12ce95377e953f3a96487ebd8bdce6
[ "MIT" ]
null
null
null
pwf/response.py
victorkohler/pwf
67f3c5990a12ce95377e953f3a96487ebd8bdce6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @author: Victor Kohler @since: date 17/12/2016 @version: 0.1 """ import httplib import helpers import cookies class Response(object): """Used to set and return data back to the server. The Response object can be instantiated in one of two ways: 1. It is created manually in the view function to add custom headers, cookies or response codes. 2. It gets created automatically once the view function returns some data. Create the response object from the view using app.make_response(data) """ def __init__(self, make_response=None, code=200, data=''): """For the view data we're currently supporting either a tuple with both the returned data and a dictionary of headers or just the returned data. """ if isinstance(data, tuple): self.data = data[0] headers = data[1] else: self.data = data headers = {} self.headers = headers self.code = code self.make_response = make_response def set_cookie(self, key, value='', path='/', expires=None, max_age=None, domain=None, secure=False, httponly=False): """Creates a cookie dictionary and adds it to the headers. This function is ment to be used in the view function: resp = make_response(data) resp.set_cookie('key', 'value') """ cookie = cookies.create_cookie(key, value, path, expires, max_age, domain, secure, httponly) #TODO: Handle multiple cookies self.headers.update(cookie) def render(self): """Renders the final response back to the server with status code, headers and data. It aslo transform headers and codes into a WSGI compatible format. If status code is 5xx or 4xx no view data is returned. """ # If the content type is not specified, we set # it to text/html as the default if 'content-type' not in map(lambda x:x.lower(), self.headers): self.headers['Content-Type'] = 'text/html' # Set headers as list of tuples self.headers = [(k, v) for k, v in self.headers.items()] # httplib.responses maps the HTTP 1.1 status codes to W3C names. # Output example: '200 OK' or '404 Not Found' resp_code = '{} {}'.format(self.code, httplib.responses[self.code]) if str(self.code)[0] in ['4', '5'] and not self.data: self.make_response(resp_code, self.headers) return resp_code.encode('utf-8') try: data = bytes(self.data).encode('utf-8') except UnicodeDecodeError: data = bytes(self.data) self.make_response(resp_code, self.headers) return data
32.94382
77
0.608458
# -*- coding: utf-8 -*- """ @author: Victor Kohler @since: date 17/12/2016 @version: 0.1 """ import httplib import helpers import cookies class Response(object): """Used to set and return data back to the server. The Response object can be instantiated in one of two ways: 1. It is created manually in the view function to add custom headers, cookies or response codes. 2. It gets created automatically once the view function returns some data. Create the response object from the view using app.make_response(data) """ def __init__(self, make_response=None, code=200, data=''): """For the view data we're currently supporting either a tuple with both the returned data and a dictionary of headers or just the returned data. """ if isinstance(data, tuple): self.data = data[0] headers = data[1] else: self.data = data headers = {} self.headers = headers self.code = code self.make_response = make_response def set_cookie(self, key, value='', path='/', expires=None, max_age=None, domain=None, secure=False, httponly=False): """Creates a cookie dictionary and adds it to the headers. This function is ment to be used in the view function: resp = make_response(data) resp.set_cookie('key', 'value') """ cookie = cookies.create_cookie(key, value, path, expires, max_age, domain, secure, httponly) #TODO: Handle multiple cookies self.headers.update(cookie) def render(self): """Renders the final response back to the server with status code, headers and data. It aslo transform headers and codes into a WSGI compatible format. If status code is 5xx or 4xx no view data is returned. """ # If the content type is not specified, we set # it to text/html as the default if 'content-type' not in map(lambda x:x.lower(), self.headers): self.headers['Content-Type'] = 'text/html' # Set headers as list of tuples self.headers = [(k, v) for k, v in self.headers.items()] # httplib.responses maps the HTTP 1.1 status codes to W3C names. # Output example: '200 OK' or '404 Not Found' resp_code = '{} {}'.format(self.code, httplib.responses[self.code]) if str(self.code)[0] in ['4', '5'] and not self.data: self.make_response(resp_code, self.headers) return resp_code.encode('utf-8') try: data = bytes(self.data).encode('utf-8') except UnicodeDecodeError: data = bytes(self.data) self.make_response(resp_code, self.headers) return data def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self.__dict__)
65
0
27
5f695683bffcbb1e02c0ef543557ed7122feba6d
5,208
py
Python
tests/algorithms/test_munchausen_dqn.py
sony/nnabla-rl
6a9a91ac5363b8611e0c9f736590729952a8d460
[ "Apache-2.0" ]
75
2021-06-14T02:35:19.000Z
2022-03-23T04:30:24.000Z
tests/algorithms/test_munchausen_dqn.py
sony/nnabla-rl
6a9a91ac5363b8611e0c9f736590729952a8d460
[ "Apache-2.0" ]
2
2021-12-17T08:46:54.000Z
2022-03-15T02:04:53.000Z
tests/algorithms/test_munchausen_dqn.py
sony/nnabla-rl
6a9a91ac5363b8611e0c9f736590729952a8d460
[ "Apache-2.0" ]
3
2021-06-15T13:32:57.000Z
2022-03-25T16:53:14.000Z
# Copyright 2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import nnabla as nn import nnabla_rl.algorithms as A import nnabla_rl.environments as E from nnabla_rl.replay_buffer import ReplayBuffer if __name__ == "__main__": from testing_utils import generate_dummy_experiences pytest.main() else: from ..testing_utils import generate_dummy_experiences
35.189189
96
0.680108
# Copyright 2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import nnabla as nn import nnabla_rl.algorithms as A import nnabla_rl.environments as E from nnabla_rl.replay_buffer import ReplayBuffer class TestMunchausenDQN(object): def setup_method(self, method): nn.clear_parameters() def test_algorithm_name(self): dummy_env = E.DummyDiscreteImg() dqn = A.MunchausenDQN(dummy_env) assert dqn.__name__ == 'MunchausenDQN' def test_continuous_action_env_unsupported(self): ''' Check that error occurs when training on continuous action env ''' dummy_env = E.DummyContinuous() config = A.MunchausenDQNConfig() with pytest.raises(Exception): A.MunchausenDQN(dummy_env, config=config) def test_run_online_training(self): ''' Check that no error occurs when calling online training ''' dummy_env = E.DummyDiscreteImg() config = A.MunchausenDQNConfig() config.start_timesteps = 5 config.batch_size = 5 config.learner_update_frequency = 1 config.target_update_frequency = 1 dqn = A.MunchausenDQN(dummy_env, config=config) dqn.train_online(dummy_env, total_iterations=10) def test_run_online_training_multistep(self): ''' Check that no error occurs when calling online training ''' dummy_env = E.DummyDiscreteImg() config = A.MunchausenDQNConfig() config.num_steps = 2 config.start_timesteps = 5 config.batch_size = 5 config.learner_update_frequency = 1 config.target_update_frequency = 1 dqn = A.MunchausenDQN(dummy_env, config=config) dqn.train_online(dummy_env, total_iterations=10) def test_run_offline_training(self): ''' Check that no error occurs when calling offline training ''' dummy_env = E.DummyDiscreteImg() batch_size = 5 config = A.MunchausenDQNConfig() config.batch_size = batch_size config.learner_update_frequency = 1 config.target_update_frequency = 1 dqn = A.MunchausenDQN(dummy_env, config=config) experiences = generate_dummy_experiences(dummy_env, batch_size) buffer = ReplayBuffer() buffer.append_all(experiences) dqn.train_offline(buffer, total_iterations=5) def test_compute_eval_action(self): dummy_env = E.DummyDiscreteImg() dqn = A.MunchausenDQN(dummy_env) state = dummy_env.reset() state = np.float32(state) action = dqn.compute_eval_action(state) assert action.shape == (1,) def test_parameter_range(self): with pytest.raises(ValueError): A.MunchausenDQNConfig(gamma=-0.1) with pytest.raises(ValueError): A.MunchausenDQNConfig(batch_size=-1) with pytest.raises(ValueError): A.MunchausenDQNConfig(learning_rate=-0.1) with pytest.raises(ValueError): A.MunchausenDQNConfig(learner_update_frequency=-1000) with pytest.raises(ValueError): A.MunchausenDQNConfig(target_update_frequency=-1000) with pytest.raises(ValueError): A.MunchausenDQNConfig(start_timesteps=-1000) with pytest.raises(ValueError): A.MunchausenDQNConfig(replay_buffer_size=-1000) with pytest.raises(ValueError): A.MunchausenDQNConfig(initial_epsilon=1.5) with pytest.raises(ValueError): A.MunchausenDQNConfig(final_epsilon=1.1) with pytest.raises(ValueError): A.MunchausenDQNConfig(test_epsilon=-1000) with pytest.raises(ValueError): A.MunchausenDQNConfig(max_explore_steps=-100) def test_latest_iteration_state(self): ''' Check that latest iteration state has the keys and values we expected ''' dummy_env = E.DummyDiscreteImg() m_dqn = A.MunchausenDQN(dummy_env) m_dqn._q_function_trainer_state = {'q_loss': 0., 'td_errors': np.array([0., 1.])} latest_iteration_state = m_dqn.latest_iteration_state assert 'q_loss' in latest_iteration_state['scalar'] assert 'td_errors' in latest_iteration_state['histogram'] assert latest_iteration_state['scalar']['q_loss'] == 0. assert np.allclose(latest_iteration_state['histogram']['td_errors'], np.array([0., 1.])) if __name__ == "__main__": from testing_utils import generate_dummy_experiences pytest.main() else: from ..testing_utils import generate_dummy_experiences
1,496
2,725
23
1474b532b2f24c55f34fba1679b92a44ff8cc539
542
py
Python
jobs/migrations/0004_auto_20180425_1550.py
Manasranjanpati/Jobpost
e5654129538e70cedf8aafc65c1b0289a01535e5
[ "MIT" ]
20
2018-05-04T18:42:35.000Z
2021-03-18T07:15:12.000Z
src/jobs/migrations/0004_auto_20180425_1550.py
fleepgeek/django-jobsite
d9547c4ee85751677ba6458380b609973c3b4a8d
[ "MIT" ]
5
2020-02-11T22:22:33.000Z
2021-06-10T20:18:05.000Z
jobs/migrations/0004_auto_20180425_1550.py
Manasranjanpati/Jobpost
e5654129538e70cedf8aafc65c1b0289a01535e5
[ "MIT" ]
8
2018-05-04T19:03:23.000Z
2020-09-23T00:24:46.000Z
# Generated by Django 2.0.4 on 2018-04-25 14:50 from django.db import migrations, models import django.db.models.deletion
23.565217
105
0.614391
# Generated by Django 2.0.4 on 2018-04-25 14:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('jobs', '0003_auto_20180425_1406'), ] operations = [ migrations.AlterField( model_name='job', name='industry', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='accounts.Industry'), ), migrations.DeleteModel( name='Industry', ), ]
0
395
23
d7bd61d9ea55136b2311139359d783a5db5ccfee
8,769
py
Python
src/Communication/Client/app.py
aquino35/elevator_system_prototype
f4b45df0852a3b6e97a32a3c312a7cc3aacb2d22
[ "MIT" ]
null
null
null
src/Communication/Client/app.py
aquino35/elevator_system_prototype
f4b45df0852a3b6e97a32a3c312a7cc3aacb2d22
[ "MIT" ]
null
null
null
src/Communication/Client/app.py
aquino35/elevator_system_prototype
f4b45df0852a3b6e97a32a3c312a7cc3aacb2d22
[ "MIT" ]
null
null
null
#!/usr/bin/env python # from .app_macros import * #relative import - did not work properly from app_macros import *
40.041096
145
0.68115
#!/usr/bin/env python # from .app_macros import * #relative import - did not work properly from app_macros import * class App(): def __init__(self,): """ App's constructor.""" self.init_app() def init_app(self): """ Initializes the App. """ try: self.setup_app() self.main_label = self.create_label(CONST_WELCOME_MSG, 25, 5, 5) self.elevator_request_button = self.create_button("elevator_request_button", self.frame, CONST_ELEVATOR_REQUEST_LABEL, self.build_elevator_keypad, 5, 8) self.run_app() # runs app on a loop except: print("Error initializing the app") def setup_app(self): """ Sets the App's frame and title. """ self.frame = Tk() # Creating main window application self.frame.geometry(CONST_GEOMETRY) # Setting size of the application's frame. self.frame.title(CONST_TITLE) # Assigning the application a title. def create_button(self, button_name, frame, txt, cb, _col, _row): """ Makes a button. """ button_name = Button(frame, text=txt, command=cb) button_name.grid(column=_col, row=_row ) return button_name def run_app(self): """ Runs the App. """ self.frame.mainloop() def destroy_button(self, button_name): """ Destroy a button in the App. """ button_name.destroy() def create_label(self, txt, size, _col, _row): """ Set the App's main label. """ self.label = Label(self.frame, text=txt, font=(CONST_FONT, size)) self.label.grid(column= _col, row= _row) return self.label def change_label(self, label, txt, size): """ Changes App's main label. Note: Does not change grid. """ self.label.configure(text=txt, font=(CONST_FONT, size)) def terminate_app(self): """ Changes App's main label.""" return def display_info(self, info): """ Display pop-up information of the elevator system.""" messagebox.showinfo(CONST_TITLE, info) def display_warning(self, info): """ Display pop-up warnings of the elevator system.""" messagebox.showwarning(CONST_TITLE, info) def display_error(self, info): """ Display pop-up errors of the elevator system.""" messagebox.showerror(CONST_TITLE, info) # Next up we can see our callbacks defined for the buttons def build_elevator_keypad(self): """ Command that builds the keypad of the elevator system.""" self.destroy_button(self.elevator_request_button) # destroy the request button self.display_info(REQUEST_MSG) # alert user that an elevator is on its way. # creating the elevator's keypad: self.elev_manager = ElevatorManager() self.display_elevator_attr() self.build_keypad_layers() def build_keypad_layers(self): """ Builds all the layers of the keypad.""" self.build_first_keypad_layer() self.build_second_keypad_layer() self.build_third_keypad_layer() self.build_fourth_keypad_layer() self.build_fith_keypad_layer() self.build_sixth_keypad_layer() self.build_seventh_keypad_layer() self.build_eight_keypad_layer() def build_eight_keypad_layer(self): """ Makes button for eight layer of the keypad.""" self.capacity_label = self.create_label(CAPACITY_LABEL, CONST_LABEL_SIZE, 1, 18) self.max_weight_label = self.create_label(MAXIMUM_WEIGHT_LABEL, CONST_LABEL_SIZE, 4, 18) def build_seventh_keypad_layer(self): """ Makes buttons for seventh layer of the keypad.""" self.maintenance_button = self.create_button("maintenance_button", self.frame, MAINTENANCE_LABEL, self.get_elevator_maintenance_state, 4, 15) def build_sixth_keypad_layer(self): """ Makes buttons for sixth layer of the keypad.""" self.open_door_button = self.create_button("open_door_button", self.frame, OPEN_DOOR_LABEL, self.open_elevator_door, 3, 6) self.close_door_button = self.create_button("close_door_button",self.frame, CLOSE_DOOR_LABEL, self.close_elevator_door, 4, 6) self.lobby_button = self.create_button("lobby_button", self.frame, LOBBY_LABEL, self.dummy, 5, 6) def build_fith_keypad_layer(self): """ Makes buttons for fith layer of the keypad.""" self.f1_button = self.create_button("f1_button", self.frame, FIRST_FLOOR_LABEL, self.set_elevator_floor(CONST_FIRST_FLOOR), 3, 4) self.f2_button = self.create_button("f2_button", self.frame, SECOND_FLOOR_LABEL, self.set_elevator_floor(CONST_SECOND_FLOOR), 4, 4) self.f3_button = self.create_button("f3_button", self.frame, THIRD_FLOOR_LABEL, self.set_elevator_floor(CONST_THIRD_FLOOR), 5, 4) def build_fourth_keypad_layer(self): """ Makes buttons for fourth layer of the keypad.""" self.f4_button = self.create_button("f4_button", self.frame, FOURTH_FLOOR_LABEL, self.set_elevator_floor(CONST_FOURTH_FLOOR), 3, 3) self.f5_button = self.create_button("f5_button", self.frame, FITH_FLOOR_LABEL, self.set_elevator_floor(CONST_FITH_FLOOR), 4, 3) self.f6_button = self.create_button("f6_button", self.frame, SIXTH_FLOOR_LABEL, self.set_elevator_floor(CONST_SIXTH_FLOOR), 5, 3) def build_third_keypad_layer(self): """ Makes buttons for third layer of the keypad""" self.f7_button = self.create_button("f7_button", self.frame, SEVENTH_FLOOR_LABEL, self.set_elevator_floor(TENTH_FLOOR_LABEL), 3, 2) self.f8_button = self.create_button("f8_button", self.frame, EIGHTH_FLOOR_LABEL, self.set_elevator_floor(ELEVENTH_FLOOR_LABEL), 4, 2) self.f9_button = self.create_button("f9_button", self.frame, NEIGH_FLOOR_LABEL, self.set_elevator_floor(TWELFTH_FLOOR_LABEL), 5, 2) def build_second_keypad_layer(self): """ Makes buttons for second layer of the keypad.""" self.f10_button = self.create_button("f10_button", self.frame, TENTH_FLOOR_LABEL, self.set_elevator_floor(TENTH_FLOOR_LABEL), 3, 1) self.f11_button = self.create_button("f11_button", self.frame, ELEVENTH_FLOOR_LABEL, self.set_elevator_floor(ELEVENTH_FLOOR_LABEL), 4, 1) self.f12_button = self.create_button("f12_button", self.frame, TWELFTH_FLOOR_LABEL, self.set_elevator_floor(TWELFTH_FLOOR_LABEL), 5, 1) def build_first_keypad_layer(self): """ Makes label for first layer of the keypad""" self.keypad_label = self.create_label(KEYPAD_LABEL, CONST_LABEL_SIZE, 3.5, 0) # title of keypad def dummy(self): return def display_elevator_attr(self): """ Display elevator attributes to the user.""" try: self.elev_manager.display_elevator_attr() self.change_label(self.main_label,CURRENT_FLOOR_LABEL, CONST_LABEL_SIZE) # current floor self.label.grid(column=0, row=1) # changing the main label's grid location self.current_temperature_label = self.create_label(CURRENT_TEMPERATURE_LABEL, CONST_LABEL_SIZE, 0, 3) # current temp self.current_weight_label = self.create_label(CURRENT_WEIGHT_LABEL, CONST_LABEL_SIZE, 0, 5) # current weight self.person_count_label = self.create_label(PERSON_COUNT_LABEL, CONST_LABEL_SIZE, 0, 7) # current person count # tests self.elev_manager.init_comm() if not (self.elev_manager.arduino_message_queue.empty()): self.arduino_test_msg = self.elev_manager.arduino_message_queue.get() #print(self.arduino_test_msg) self.arduino_test = self.create_label(self.arduino_test_msg, CONST_LABEL_SIZE, 0, 2) self.arduino_test = self.create_label(self.arduino_test_msg, CONST_LABEL_SIZE, 0, 4) self.arduino_test = self.create_label(self.arduino_test_msg, CONST_LABEL_SIZE, 0, 6) self.arduino_test = self.create_label(self.arduino_test_msg, CONST_LABEL_SIZE, 0, 8) except: print("Elevator attributes could not be displayed") def open_elevator_door(self): """ Calls the manager to open the door.""" self.elev_manager.set_elevator_door_status() def close_elevator_door(self): self.elev_manager.set_elevator_door_status() def set_elevator_floor(self, floor): self.elev_manager.set_elevator_floor(floor) def get_elevator_lobby(self): self.elev_manager.get_elevator_lobby() def get_elevator_maintenance_state(self): self.elev_manager.get_elevator_maintenance_state()
276
8,348
23
715654525e3b92ba082de887c45890f1f82a1f3f
1,973
py
Python
book/src/ch03/src/exceptions_2.py
zangyuchen2008/Clean-Code-in-Python-Second-Edition
0be2e41f6cf7322e12ec55d76135ff398df61b4a
[ "MIT" ]
133
2016-07-22T15:16:16.000Z
2022-03-29T22:39:40.000Z
book/src/ch03/src/exceptions_2.py
zangyuchen2008/Clean-Code-in-Python-Second-Edition
0be2e41f6cf7322e12ec55d76135ff398df61b4a
[ "MIT" ]
137
2021-01-05T11:21:04.000Z
2022-03-31T11:10:11.000Z
book/src/ch03/src/exceptions_2.py
zangyuchen2008/Clean-Code-in-Python-Second-Edition
0be2e41f6cf7322e12ec55d76135ff398df61b4a
[ "MIT" ]
41
2020-12-29T04:46:14.000Z
2022-03-20T22:36:17.000Z
"""Clean Code in Python - Chapter 3: General Traits of Good Code > Error Handling - Exceptions """ import logging import time from base import Connector, Event logger = logging.getLogger(__name__) def connect_with_retry( connector: Connector, retry_n_times: int, retry_backoff: int = 5 ): """Tries to establish the connection of <connector> retrying <retry_n_times>, and waiting <retry_backoff> seconds between attempts. If it can connect, returns the connection object. If it's not possible to connect after the retries have been exhausted, raises ``ConnectionError``. :param connector: An object with a ``.connect()`` method. :param retry_n_times int: The number of times to try to call ``connector.connect()``. :param retry_backoff int: The time lapse between retry calls. """ for _ in range(retry_n_times): try: return connector.connect() except ConnectionError as e: logger.info( "%s: attempting new connection in %is", e, retry_backoff ) time.sleep(retry_backoff) exc = ConnectionError(f"Couldn't connect after {retry_n_times} times") logger.exception(exc) raise exc class DataTransport: """An example of an object that separates the exception handling by abstraction levels. """ _RETRY_BACKOFF: int = 5 _RETRY_TIMES: int = 3
30.353846
102
0.647745
"""Clean Code in Python - Chapter 3: General Traits of Good Code > Error Handling - Exceptions """ import logging import time from base import Connector, Event logger = logging.getLogger(__name__) def connect_with_retry( connector: Connector, retry_n_times: int, retry_backoff: int = 5 ): """Tries to establish the connection of <connector> retrying <retry_n_times>, and waiting <retry_backoff> seconds between attempts. If it can connect, returns the connection object. If it's not possible to connect after the retries have been exhausted, raises ``ConnectionError``. :param connector: An object with a ``.connect()`` method. :param retry_n_times int: The number of times to try to call ``connector.connect()``. :param retry_backoff int: The time lapse between retry calls. """ for _ in range(retry_n_times): try: return connector.connect() except ConnectionError as e: logger.info( "%s: attempting new connection in %is", e, retry_backoff ) time.sleep(retry_backoff) exc = ConnectionError(f"Couldn't connect after {retry_n_times} times") logger.exception(exc) raise exc class DataTransport: """An example of an object that separates the exception handling by abstraction levels. """ _RETRY_BACKOFF: int = 5 _RETRY_TIMES: int = 3 def __init__(self, connector: Connector) -> None: self._connector = connector self.connection = None def deliver_event(self, event: Event): self.connection = connect_with_retry( self._connector, self._RETRY_TIMES, self._RETRY_BACKOFF ) self.send(event) def send(self, event: Event): try: return self.connection.send(event.decode()) except ValueError as e: logger.error("%r contains incorrect data: %s", event, e) raise
457
0
81
8d79833ad772a85de78f2fa31627239a732baf79
373
py
Python
modules/tag/controllers.py
srcc-msu/job_statistics
74680a4e4c105ebcff94f089e07fcb44dbcc12d9
[ "MIT" ]
null
null
null
modules/tag/controllers.py
srcc-msu/job_statistics
74680a4e4c105ebcff94f089e07fcb44dbcc12d9
[ "MIT" ]
null
null
null
modules/tag/controllers.py
srcc-msu/job_statistics
74680a4e4c105ebcff94f089e07fcb44dbcc12d9
[ "MIT" ]
null
null
null
from flask import Blueprint, render_template, Response from application.helpers import requires_auth from core.tag.models import Tag tag_pages = Blueprint('tag', __name__ , template_folder='templates', static_folder='static') @tag_pages.route("/list") @requires_auth
23.3125
55
0.772118
from flask import Blueprint, render_template, Response from application.helpers import requires_auth from core.tag.models import Tag tag_pages = Blueprint('tag', __name__ , template_folder='templates', static_folder='static') @tag_pages.route("/list") @requires_auth def urls() -> Response: tags = Tag.query.all() return render_template("tag_list.html", tags=tags)
79
0
22
b57b9505c8bad95a1530bcc342608852f891d4ba
9,474
py
Python
retinaFace/widerface_evaluate.py
factzero/pytorch_jaguarface_examples
f248ff8899b8fe9d41a1e8ac095ed5b6688987ed
[ "MIT" ]
2
2020-04-09T05:48:35.000Z
2020-05-05T03:22:20.000Z
retinaFace/widerface_evaluate.py
factzero/pytorch_jaguarface_examples
f248ff8899b8fe9d41a1e8ac095ed5b6688987ed
[ "MIT" ]
1
2020-04-09T05:49:49.000Z
2020-04-09T05:49:49.000Z
retinaFace/widerface_evaluate.py
factzero/pytorch_jaguarface_examples
f248ff8899b8fe9d41a1e8ac095ed5b6688987ed
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- import os import tqdm import pickle import argparse import numpy as np from scipy.io import loadmat parser = argparse.ArgumentParser(description='widerface evaluate') parser.add_argument('-p', '--pred', default="./widerface_evaluate/widerface_txt/") parser.add_argument('-g', '--gt', default='./widerface_evaluate/ground_truth/') args = parser.parse_args() def bbox_overlaps(bboxes1, bboxes2, mode='iou'): """Calculate the ious between each bbox of bboxes1 and bboxes2. Args: bboxes1(ndarray): shape (n, 4) bboxes2(ndarray): shape (k, 4) mode(str): iou (intersection over union) or iof (intersection over foreground) Returns: ious(ndarray): shape (n, k) """ assert mode in ['iou', 'iof'] bboxes1 = bboxes1.astype(np.float32) bboxes2 = bboxes2.astype(np.float32) rows = bboxes1.shape[0] cols = bboxes2.shape[0] ious = np.zeros((rows, cols), dtype=np.float32) if rows * cols == 0: return ious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 ious = np.zeros((cols, rows), dtype=np.float32) exchange = True area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * ( bboxes1[:, 3] - bboxes1[:, 1] + 1) area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * ( bboxes2[:, 3] - bboxes2[:, 1] + 1) for i in range(bboxes1.shape[0]): x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0]) y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1]) x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2]) y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3]) overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum( y_end - y_start + 1, 0) if mode == 'iou': union = area1[i] + area2 - overlap else: union = area1[i] if not exchange else area2 ious[i, :] = overlap / union if exchange: ious = ious.T return ious def get_gt_boxes(gt_dir): """ gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)""" gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat')) hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat')) medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat')) easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat')) facebox_list = gt_mat['face_bbx_list'] event_list = gt_mat['event_list'] file_list = gt_mat['file_list'] hard_gt_list = hard_mat['gt_list'] medium_gt_list = medium_mat['gt_list'] easy_gt_list = easy_mat['gt_list'] return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list def norm_score(pred): """ norm score pred {key: [[x1,y1,x2,y2,s]]} """ max_score = 0 min_score = 1 for _, k in pred.items(): for _, v in k.items(): if len(v) == 0: continue _min = np.min(v[:, -1]) _max = np.max(v[:, -1]) max_score = max(_max, max_score) min_score = min(_min, min_score) diff = max_score - min_score for _, k in pred.items(): for _, v in k.items(): if len(v) == 0: continue v[:, -1] = (v[:, -1] - min_score)/diff def image_eval(pred, gt, ignore, iou_thresh): """ single image evaluation pred: Nx5 gt: Nx4 ignore: """ _pred = pred.copy() _gt = gt.copy() pred_recall = np.zeros(_pred.shape[0]) recall_list = np.zeros(_gt.shape[0]) proposal_list = np.ones(_pred.shape[0]) _pred[:, 2] = _pred[:, 2] + _pred[:, 0] _pred[:, 3] = _pred[:, 3] + _pred[:, 1] _gt[:, 2] = _gt[:, 2] + _gt[:, 0] _gt[:, 3] = _gt[:, 3] + _gt[:, 1] overlaps = bbox_overlaps(_pred[:, :4], _gt) for h in range(_pred.shape[0]): gt_overlap = overlaps[h] max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax() if max_overlap >= iou_thresh: if ignore[max_idx] == 0: recall_list[max_idx] = -1 proposal_list[h] = -1 elif recall_list[max_idx] == 0: recall_list[max_idx] = 1 r_keep_index = np.where(recall_list == 1)[0] pred_recall[h] = len(r_keep_index) return pred_recall, proposal_list if __name__ == '__main__': evaluation(args.pred, args.gt)
32.895833
136
0.569559
# -*- coding: UTF-8 -*- import os import tqdm import pickle import argparse import numpy as np from scipy.io import loadmat parser = argparse.ArgumentParser(description='widerface evaluate') parser.add_argument('-p', '--pred', default="./widerface_evaluate/widerface_txt/") parser.add_argument('-g', '--gt', default='./widerface_evaluate/ground_truth/') args = parser.parse_args() def bbox_overlaps(bboxes1, bboxes2, mode='iou'): """Calculate the ious between each bbox of bboxes1 and bboxes2. Args: bboxes1(ndarray): shape (n, 4) bboxes2(ndarray): shape (k, 4) mode(str): iou (intersection over union) or iof (intersection over foreground) Returns: ious(ndarray): shape (n, k) """ assert mode in ['iou', 'iof'] bboxes1 = bboxes1.astype(np.float32) bboxes2 = bboxes2.astype(np.float32) rows = bboxes1.shape[0] cols = bboxes2.shape[0] ious = np.zeros((rows, cols), dtype=np.float32) if rows * cols == 0: return ious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 ious = np.zeros((cols, rows), dtype=np.float32) exchange = True area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * ( bboxes1[:, 3] - bboxes1[:, 1] + 1) area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * ( bboxes2[:, 3] - bboxes2[:, 1] + 1) for i in range(bboxes1.shape[0]): x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0]) y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1]) x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2]) y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3]) overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum( y_end - y_start + 1, 0) if mode == 'iou': union = area1[i] + area2 - overlap else: union = area1[i] if not exchange else area2 ious[i, :] = overlap / union if exchange: ious = ious.T return ious def get_gt_boxes(gt_dir): """ gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)""" gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat')) hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat')) medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat')) easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat')) facebox_list = gt_mat['face_bbx_list'] event_list = gt_mat['event_list'] file_list = gt_mat['file_list'] hard_gt_list = hard_mat['gt_list'] medium_gt_list = medium_mat['gt_list'] easy_gt_list = easy_mat['gt_list'] return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list def read_pred_file(filepath): with open(filepath, 'r') as f: lines = f.readlines() img_file = lines[0].rstrip('\n\r') lines = lines[2:] # b = lines[0].rstrip('\r\n').split(' ')[:-1] # c = float(b) # a = map(lambda x: [[float(a[0]), float(a[1]), float(a[2]), float(a[3]), float(a[4])] for a in x.rstrip('\r\n').split(' ')], lines) boxes = [] for line in lines: line = line.rstrip('\r\n').split(' ') if line[0] is '': continue # a = float(line[4]) boxes.append([float(line[0]), float(line[1]), float( line[2]), float(line[3]), float(line[4])]) boxes = np.array(boxes) # boxes = np.array(list(map(lambda x: [float(a) for a in x.rstrip('\r\n').split(' ')], lines))).astype('float') return img_file.split('/')[-1], boxes def get_preds(pred_dir): events = os.listdir(pred_dir) boxes = dict() pbar = tqdm.tqdm(events) for event in pbar: pbar.set_description('Reading Predictions ') event_dir = os.path.join(pred_dir, event) event_images = os.listdir(event_dir) current_event = dict() for imgtxt in event_images: imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt)) current_event[imgname.rstrip('.jpg')] = _boxes boxes[event] = current_event return boxes def norm_score(pred): """ norm score pred {key: [[x1,y1,x2,y2,s]]} """ max_score = 0 min_score = 1 for _, k in pred.items(): for _, v in k.items(): if len(v) == 0: continue _min = np.min(v[:, -1]) _max = np.max(v[:, -1]) max_score = max(_max, max_score) min_score = min(_min, min_score) diff = max_score - min_score for _, k in pred.items(): for _, v in k.items(): if len(v) == 0: continue v[:, -1] = (v[:, -1] - min_score)/diff def image_eval(pred, gt, ignore, iou_thresh): """ single image evaluation pred: Nx5 gt: Nx4 ignore: """ _pred = pred.copy() _gt = gt.copy() pred_recall = np.zeros(_pred.shape[0]) recall_list = np.zeros(_gt.shape[0]) proposal_list = np.ones(_pred.shape[0]) _pred[:, 2] = _pred[:, 2] + _pred[:, 0] _pred[:, 3] = _pred[:, 3] + _pred[:, 1] _gt[:, 2] = _gt[:, 2] + _gt[:, 0] _gt[:, 3] = _gt[:, 3] + _gt[:, 1] overlaps = bbox_overlaps(_pred[:, :4], _gt) for h in range(_pred.shape[0]): gt_overlap = overlaps[h] max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax() if max_overlap >= iou_thresh: if ignore[max_idx] == 0: recall_list[max_idx] = -1 proposal_list[h] = -1 elif recall_list[max_idx] == 0: recall_list[max_idx] = 1 r_keep_index = np.where(recall_list == 1)[0] pred_recall[h] = len(r_keep_index) return pred_recall, proposal_list def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall): pr_info = np.zeros((thresh_num, 2)).astype('float') for t in range(thresh_num): thresh = 1 - (t+1)/thresh_num r_index = np.where(pred_info[:, 4] >= thresh)[0] if len(r_index) == 0: pr_info[t, 0] = 0 pr_info[t, 1] = 0 else: r_index = r_index[-1] p_index = np.where(proposal_list[:r_index+1] == 1)[0] pr_info[t, 0] = len(p_index) pr_info[t, 1] = pred_recall[r_index] return pr_info def dataset_pr_info(thresh_num, pr_curve, count_face): _pr_curve = np.zeros((thresh_num, 2)) for i in range(thresh_num): _pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0] _pr_curve[i, 1] = pr_curve[i, 1] / count_face return _pr_curve def voc_ap(rec, prec): # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def evaluation(pred, gt_path, iou_thresh=0.5): pred = get_preds(pred) norm_score(pred) facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = get_gt_boxes( gt_path) event_num = len(event_list) thresh_num = 1000 settings = ['easy', 'medium', 'hard'] setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list] aps = [] for setting_id in range(3): # different setting gt_list = setting_gts[setting_id] count_face = 0 pr_curve = np.zeros((thresh_num, 2)).astype('float') # [hard, medium, easy] pbar = tqdm.tqdm(range(event_num)) for i in pbar: pbar.set_description('Processing {}'.format(settings[setting_id])) event_name = str(event_list[i][0][0]) img_list = file_list[i][0] pred_list = pred[event_name] sub_gt_list = gt_list[i][0] # img_pr_info_list = np.zeros((len(img_list), thresh_num, 2)) gt_bbx_list = facebox_list[i][0] for j in range(len(img_list)): pred_info = pred_list[str(img_list[j][0][0])] gt_boxes = gt_bbx_list[j][0].astype('float') keep_index = sub_gt_list[j][0] count_face += len(keep_index) if len(gt_boxes) == 0 or len(pred_info) == 0: continue ignore = np.zeros(gt_boxes.shape[0]) if len(keep_index) != 0: ignore[keep_index-1] = 1 pred_recall, proposal_list = image_eval( pred_info, gt_boxes, ignore, iou_thresh) _img_pr_info = img_pr_info( thresh_num, pred_info, proposal_list, pred_recall) pr_curve += _img_pr_info pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face) propose = pr_curve[:, 0] recall = pr_curve[:, 1] ap = voc_ap(recall, propose) aps.append(ap) print("==================== Results ====================") print("Easy Val AP: {}".format(aps[0])) print("Medium Val AP: {}".format(aps[1])) print("Hard Val AP: {}".format(aps[2])) print("=================================================") if __name__ == '__main__': evaluation(args.pred, args.gt)
4,904
0
138
b6ea7427c056f0c167209b3122696506b99b84b8
1,279
py
Python
scripts/appveyor/copydeps.py
seec-team/seec
4b92456011e86b70f9d88833a95c1f655a21cf1a
[ "MIT" ]
7
2018-06-25T12:06:13.000Z
2022-01-18T09:20:13.000Z
scripts/appveyor/copydeps.py
seec-team/seec
4b92456011e86b70f9d88833a95c1f655a21cf1a
[ "MIT" ]
20
2016-12-01T23:46:12.000Z
2019-08-11T02:41:04.000Z
scripts/appveyor/copydeps.py
seec-team/seec
4b92456011e86b70f9d88833a95c1f655a21cf1a
[ "MIT" ]
1
2020-10-19T03:20:05.000Z
2020-10-19T03:20:05.000Z
import os import subprocess import shutil OBJDUMP = "objdump" DLL_NAME_PREFIX = 'DLL Name:' paths = filter(lambda line: not "windows" in line.lower(), os.environ['PATH'].split(os.pathsep)) searchfiles = [f for f in os.listdir('.') if is_interesting_local_file(f)] while len(searchfiles): localfile = searchfiles.pop(0) print "checking " + localfile for dep in get_dependencies(localfile): if not in_cwd(dep): fullpath = find_in_path(dep) if fullpath: print "copying from " + fullpath shutil.copy(fullpath, os.getcwd()) searchfiles.append(dep)
27.804348
78
0.684128
import os import subprocess import shutil OBJDUMP = "objdump" DLL_NAME_PREFIX = 'DLL Name:' paths = filter(lambda line: not "windows" in line.lower(), os.environ['PATH'].split(os.pathsep)) def find_in_path(file): for path in paths: fullpath = os.path.join(path, file) if os.path.isfile(fullpath): return fullpath return None def in_cwd(file): return os.path.isfile(os.path.join(os.getcwd(), file)) def get_dependencies(file): try: for line in subprocess.check_output([OBJDUMP, '-p', file]).split('\n'): if DLL_NAME_PREFIX in line: yield line[line.find(DLL_NAME_PREFIX) + len(DLL_NAME_PREFIX):].strip() except CalledProcessError: print "exception checking " + file pass def is_interesting_local_file(file): lwr = file.lower() return os.path.isfile(file) and (lwr.endswith("exe") or lwr.endswith("dll")) searchfiles = [f for f in os.listdir('.') if is_interesting_local_file(f)] while len(searchfiles): localfile = searchfiles.pop(0) print "checking " + localfile for dep in get_dependencies(localfile): if not in_cwd(dep): fullpath = find_in_path(dep) if fullpath: print "copying from " + fullpath shutil.copy(fullpath, os.getcwd()) searchfiles.append(dep)
579
0
92
d64d7f2f072d118598f9c54bda691695735052c8
2,320
py
Python
thirdparty/blender_autocomplete-master/2.82/bpy/ops/import_anim.py
Ray1184/HPMSBatch
3852710e7366361cb9e90f471ddccbbce5ffe8ee
[ "MIT" ]
null
null
null
thirdparty/blender_autocomplete-master/2.82/bpy/ops/import_anim.py
Ray1184/HPMSBatch
3852710e7366361cb9e90f471ddccbbce5ffe8ee
[ "MIT" ]
null
null
null
thirdparty/blender_autocomplete-master/2.82/bpy/ops/import_anim.py
Ray1184/HPMSBatch
3852710e7366361cb9e90f471ddccbbce5ffe8ee
[ "MIT" ]
null
null
null
import sys import typing def bvh(filepath: str = "", filter_glob: str = "*.bvh", target: typing.Union[str, int] = 'ARMATURE', global_scale: float = 1.0, frame_start: int = 1, use_fps_scale: bool = False, update_scene_fps: bool = False, update_scene_duration: bool = False, use_cyclic: bool = False, rotate_mode: typing.Union[str, int] = 'NATIVE', axis_forward: typing.Union[str, int] = '-Z', axis_up: typing.Union[str, int] = 'Y'): '''Load a BVH motion capture file :param filepath: File Path, Filepath used for importing the file :type filepath: str :param filter_glob: filter_glob :type filter_glob: str :param target: Target, Import target type :type target: typing.Union[str, int] :param global_scale: Scale, Scale the BVH by this value :type global_scale: float :param frame_start: Start Frame, Starting frame for the animation :type frame_start: int :param use_fps_scale: Scale FPS, Scale the framerate from the BVH to the current scenes, otherwise each BVH frame maps directly to a Blender frame :type use_fps_scale: bool :param update_scene_fps: Update Scene FPS, Set the scene framerate to that of the BVH file (note that this nullifies the ‘Scale FPS’ option, as the scale will be 1:1) :type update_scene_fps: bool :param update_scene_duration: Update Scene Duration, Extend the scene’s duration to the BVH duration (never shortens the scene) :type update_scene_duration: bool :param use_cyclic: Loop, Loop the animation playback :type use_cyclic: bool :param rotate_mode: Rotation, Rotation conversionQUATERNION Quaternion, Convert rotations to quaternions.NATIVE Euler (Native), Use the rotation order defined in the BVH file.XYZ Euler (XYZ), Convert rotations to euler XYZ.XZY Euler (XZY), Convert rotations to euler XZY.YXZ Euler (YXZ), Convert rotations to euler YXZ.YZX Euler (YZX), Convert rotations to euler YZX.ZXY Euler (ZXY), Convert rotations to euler ZXY.ZYX Euler (ZYX), Convert rotations to euler ZYX. :type rotate_mode: typing.Union[str, int] :param axis_forward: Forward :type axis_forward: typing.Union[str, int] :param axis_up: Up :type axis_up: typing.Union[str, int] ''' pass
50.434783
468
0.702586
import sys import typing def bvh(filepath: str = "", filter_glob: str = "*.bvh", target: typing.Union[str, int] = 'ARMATURE', global_scale: float = 1.0, frame_start: int = 1, use_fps_scale: bool = False, update_scene_fps: bool = False, update_scene_duration: bool = False, use_cyclic: bool = False, rotate_mode: typing.Union[str, int] = 'NATIVE', axis_forward: typing.Union[str, int] = '-Z', axis_up: typing.Union[str, int] = 'Y'): '''Load a BVH motion capture file :param filepath: File Path, Filepath used for importing the file :type filepath: str :param filter_glob: filter_glob :type filter_glob: str :param target: Target, Import target type :type target: typing.Union[str, int] :param global_scale: Scale, Scale the BVH by this value :type global_scale: float :param frame_start: Start Frame, Starting frame for the animation :type frame_start: int :param use_fps_scale: Scale FPS, Scale the framerate from the BVH to the current scenes, otherwise each BVH frame maps directly to a Blender frame :type use_fps_scale: bool :param update_scene_fps: Update Scene FPS, Set the scene framerate to that of the BVH file (note that this nullifies the ‘Scale FPS’ option, as the scale will be 1:1) :type update_scene_fps: bool :param update_scene_duration: Update Scene Duration, Extend the scene’s duration to the BVH duration (never shortens the scene) :type update_scene_duration: bool :param use_cyclic: Loop, Loop the animation playback :type use_cyclic: bool :param rotate_mode: Rotation, Rotation conversionQUATERNION Quaternion, Convert rotations to quaternions.NATIVE Euler (Native), Use the rotation order defined in the BVH file.XYZ Euler (XYZ), Convert rotations to euler XYZ.XZY Euler (XZY), Convert rotations to euler XZY.YXZ Euler (YXZ), Convert rotations to euler YXZ.YZX Euler (YZX), Convert rotations to euler YZX.ZXY Euler (ZXY), Convert rotations to euler ZXY.ZYX Euler (ZYX), Convert rotations to euler ZYX. :type rotate_mode: typing.Union[str, int] :param axis_forward: Forward :type axis_forward: typing.Union[str, int] :param axis_up: Up :type axis_up: typing.Union[str, int] ''' pass
0
0
0
eb863368aec5ab18e9d5732dca071219bfaab1e7
329
py
Python
1stRound/Easy/728 Self Dividing Numbers/Filter.py
ericchen12377/Leetcode-Algorithm-Python
eb58cd4f01d9b8006b7d1a725fc48910aad7f192
[ "MIT" ]
2
2020-04-24T18:36:52.000Z
2020-04-25T00:15:57.000Z
1stRound/Easy/728 Self Dividing Numbers/Filter.py
ericchen12377/Leetcode-Algorithm-Python
eb58cd4f01d9b8006b7d1a725fc48910aad7f192
[ "MIT" ]
null
null
null
1stRound/Easy/728 Self Dividing Numbers/Filter.py
ericchen12377/Leetcode-Algorithm-Python
eb58cd4f01d9b8006b7d1a725fc48910aad7f192
[ "MIT" ]
null
null
null
left = 1 right = 22 p = Solution() print(p.selfDividingNumbers(left,right))
41.125
111
0.68997
class Solution(object): def selfDividingNumbers(self, left, right): is_self_dividing = lambda num: '0' not in str(num) and all(num % int(digit) == 0 for digit in str(num)) return list(filter(is_self_dividing, range(left, right + 1))) left = 1 right = 22 p = Solution() print(p.selfDividingNumbers(left,right))
204
2
48
e51cf604f2301e3c5c1ccbf90cc8310f8eb78db9
1,398
py
Python
patsong/users/views.py
didils/PATSONG
3747617e70ed2cf67114ace475d1f92bee4e1784
[ "MIT" ]
null
null
null
patsong/users/views.py
didils/PATSONG
3747617e70ed2cf67114ace475d1f92bee4e1784
[ "MIT" ]
null
null
null
patsong/users/views.py
didils/PATSONG
3747617e70ed2cf67114ace475d1f92bee4e1784
[ "MIT" ]
null
null
null
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from . import models from allauth.socialaccount.providers.facebook.views import FacebookOAuth2Adapter from rest_auth.registration.views import SocialLoginView
26.884615
80
0.638054
from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from . import models from allauth.socialaccount.providers.facebook.views import FacebookOAuth2Adapter from rest_auth.registration.views import SocialLoginView class ChangePassword(APIView): def put(self, request, username, format=None): user = request.user if user.username == username: current_password = request.data.get('current_password', None) if current_password is not None: passwords_match = user.check_password(current_password) if passwords_match: new_password = request.data.get('new_password', None) if new_password is not None: user.set_password(new_password) user.save() return Response(status=status.HTTP_200_OK) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: return Response(status=status.HTTP_400_BAD_REQUEST) else: return Response(status=status.HTTP_400_BAD_REQUEST) class FacebookLogin(SocialLoginView): adapter_class = FacebookOAuth2Adapter
979
67
73
563a0e2a62d5b3da6ba694bb732f0d298837ea5f
294
py
Python
Python/django/myFirstDjangoProject/rdmsproj/rdmsapp/tests.py
honchardev/Fun
ca7c0076e9bb3017c5d7e89aa7d5bd54a83c8ecc
[ "MIT" ]
null
null
null
Python/django/myFirstDjangoProject/rdmsproj/rdmsapp/tests.py
honchardev/Fun
ca7c0076e9bb3017c5d7e89aa7d5bd54a83c8ecc
[ "MIT" ]
3
2020-03-24T16:26:35.000Z
2020-04-15T19:40:41.000Z
Python/django/myFirstDjangoProject/rdmsproj/rdmsapp/tests.py
honchardev/Fun
ca7c0076e9bb3017c5d7e89aa7d5bd54a83c8ecc
[ "MIT" ]
null
null
null
from django.test import TestCase from rdmsapp.models import Contact class ContactTests(TestCase): """Contact model tests."""
22.615385
46
0.605442
from django.test import TestCase from rdmsapp.models import Contact class ContactTests(TestCase): """Contact model tests.""" def test_str(self): contact = Contact( first_name='a', last_name='b', ) self.assertEquals(str(contact), 'a b')
137
0
26