Autoencoders / README.md
lightx2v's picture
Update README.md
7079935 verified
---
license: apache-2.0
tags:
- diffusion-single-file
- comfyui
- distillation
- LoRA
- video
- video genration
base_model:
- Wan-AI/Wan2.2-I2V-A14B
- Wan-AI/Wan2.2-TI2V-5B
- Wan-AI/Wan2.1-I2V-14B-720P
pipeline_tags:
- image-to-video
- text-to-video
library_name: diffusers
---
# 🎨 LightVAE
## ⚑ Efficient Video Autoencoder (VAE) Model Collection
*From Official Models to Lightx2v Distilled Optimized Versions - Balancing Quality, Speed and Memory*
![img_lightx2v](https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/tTnp8-ARpj3wGxfo5P55c.png)
---
[![πŸ€— HuggingFace](https://img.shields.io/badge/πŸ€—-HuggingFace-yellow)](https://huggingface.co/lightx2v)
[![GitHub](https://img.shields.io/badge/GitHub-LightX2V-blue?logo=github)](https://github.com/ModelTC/LightX2V)
[![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE)
---
For VAE, the LightX2V team has conducted a series of deep optimizations, deriving two major series: **LightVAE** and **LightTAE**, which significantly reduce memory consumption and improve inference speed while maintaining high quality.
## πŸ’‘ Core Advantages
<table>
<tr>
<td width="50%">
### πŸ“Š Official VAE
**Features**: Highest Quality ⭐⭐⭐⭐⭐
βœ… Best reconstruction accuracy
βœ… Complete detail preservation
❌ Large memory usage (~8-12 GB)
❌ Slow inference speed
</td>
<td width="50%">
### πŸš€ Open Source TAE Series
**Features**: Fastest Speed ⚑⚑⚑⚑⚑
βœ… Minimal memory usage (~0.4 GB)
βœ… Extremely fast inference
❌ Average quality ⭐⭐⭐
❌ Potential detail loss
</td>
</tr>
<tr>
<td width="50%">
### 🎯 **LightVAE Series** (Our Optimization)
**Features**: Best Balanced Solution βš–οΈ
βœ… Uses **Causal 3D Conv** (same as official)
βœ… **Quality close to official** ⭐⭐⭐⭐
βœ… Memory reduced by **~50%** (~4-5 GB)
βœ… Speed increased by **2-3x**
βœ… Balances quality, speed, and memory πŸ†
</td>
<td width="50%">
### ⚑ **LightTAE Series** (Our Optimization)
**Features**: Fast Speed + Good Quality πŸ†
βœ… Minimal memory usage (~0.4 GB)
βœ… Extremely fast inference
βœ… **Quality close to official** ⭐⭐⭐⭐
βœ… **Significantly surpasses open source TAE**
</td>
</tr>
</table>
---
## πŸ“¦ Available Models
### 🎯 Wan2.1 Series VAE
| Model Name | Type | Architecture | Description |
|:--------|:-----|:-----|:-----|
| `Wan2.1_VAE` | Official VAE | Causal Conv3D | Wan2.1 official video VAE model<br>**Highest quality, large memory, slow speed** |
| `taew2_1` | Open Source Small AE | Conv2D | Open source model based on [taeHV](https://github.com/madebyollin/taeHV)<br>**Small memory, fast speed, average quality** |
| **`lighttaew2_1`** | **LightTAE Series** | Conv2D | **Our distilled optimized version based on `taew2_1`**<br>**Small memory, fast speed, quality close to official** ✨ |
| **`lightvaew2_1`** | **LightVAE Series** | Causal Conv3D | **Our pruned 75% on WanVAE2.1 architecture then trained+distilled**<br>**Best balance: high quality + low memory + fast speed** πŸ† |
### 🎯 Wan2.2 Series VAE
| Model Name | Type | Architecture | Description |
|:--------|:-----|:-----|:-----|
| `Wan2.2_VAE` | Official VAE | Causal Conv3D | Wan2.2 official video VAE model<br>**Highest quality, large memory, slow speed** |
| `taew2_2` | Open Source Small AE | Conv2D | Open source model based on [taeHV](https://github.com/madebyollin/taeHV)<br>**Small memory, fast speed, average quality** |
| **`lighttaew2_2`** | **LightTAE Series** | Conv2D | **Our distilled optimized version based on `taew2_2`**<br>**Small memory, fast speed, quality close to official** ✨ |
---
## πŸ“Š Wan2.1 Series Performance Comparison
- **Precision**: BF16
- **Test Hardware**: NVIDIA H100
### Video Reconstruction (5s 81-frame video)
|Speed | Wan2.1_VAE | taew2_1 | lighttaew2_1 | lightvaew2_1 |
|:-----|:--------------|:------------|:---------------------|:-------------|
| **Encode Speed** | 4.1721 s | 0.3956 s | 0.3956 s |1.5014s |
| **Decode Speed** | 5.4649 s | 0.2463 s | 0.2463 s | 2.0697s |
|GPU Memory | Wan2.1_VAE | taew2_1 | lighttaew2_1 | lightvaew2_1 |
|:-----|:--------------|:------------|:---------------------|:-------------|
| **Encode Memory** | 8.4954 GB | 0.00858 GB | 0.00858 GB | 4.7631 GB |
| **Decode Memory** | 10.1287 GB | 0.41199 GB | 0.41199 GB | 5.5673 GB |
### Video Generation
Task: s2v(speech to video)
Model: seko-talk
<table>
<tr>
<td width="25%" align="center">
<strong>Wan2.1_VAE</strong><br>
<video controls autoplay muted width="100%" src="https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/6l-P-3Hr9JKL3xgUyJXWJ.mp4"></video>
</td>
<td width="25%" align="center">
<strong>taew2_1</strong><br>
<video controls autoplay muted width="100%" src="https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/rcVHrCKB4nRAs2VSjJd2d.mp4"></video>
</td>
<td width="25%" align="center">
<strong>lighttaew2_1</strong><br>
<video controls autoplay muted width="100%" src="https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/Wq9p9Z7NDYwaKw4SqVbYT.mp4"></video>
</td>
<td width="25%" align="center">
<strong>lightvaew2_1</strong><br>
<video controls autoplay muted width="100%" src="https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/NpKOzFcvsHzSFfFACzUKP.mp4"></video>
</td>
</tr>
</table>
## πŸ“Š Wan2.2 Series Performance Comparison
- **Precision**: BF16
- **Test Hardware**: NVIDIA H100
### Video Reconstruction
| Speed | Wan2.2_VAE | taew2_2 | lighttaew2_2 |
|:-----|:--------------|:------------|:---------------------|
| **Encode Speed** | 1.1369s | 0.3499 s | 0.3499 s |
| **Decode Speed** | 3.1268 s | 0.0891 s | 0.0891 s|
| GPU Memory | Wan2.2_VAE | taew2_2 | lighttaew2_2 |
|:-----|:--------------|:------------|:---------------------|
| **Encode Memory** | 6.1991 GB | 0.0064 GB | 0.0064 GB |
| **Decode Memory** | 12.3487 GB | 0.4120 GB | 0.4120 GB |
### Video Generation
Task: t2v(text to video)
Model: [Wan2.2-TI2V-5B](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B)
<table>
<tr>
<td width="33%" align="center">
<strong>Wan2.2_VAE</strong><br>
<video controls autoplay width="95%" src="https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/KUY7Ifz9gFJqDjWga6A53.mp4"></video>
</td>
<td width="33%" align="center">
<strong>taew2_2</strong><br>
<video controls autoplay width="95%" src="https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/OYA8VfNlCv_hBkj_n_OMl.mp4"></video>
</td>
<td width="33%" align="center">
<strong>lighttaew2_2</strong><br>
<video controls autoplay width="95%" src="https://cdn-uploads.huggingface.co/production/uploads/680de13385293771bc57400b/gaHRr6uuAF0NlH4YlMbHO.mp4"></video>
</td>
</tr>
</table>
## 🎯 Model Selection Recommendations
### Selection by Use Case
<table>
<tr>
<td width="33%">
#### πŸ† Pursuing Best Quality
**Recommended**: `Wan2.1_VAE` / `Wan2.2_VAE`
- βœ… Official model, quality ceiling
- βœ… Highest reconstruction accuracy
- βœ… Suitable for final product output
- ⚠️ **Large memory usage** (~8-12 GB)
- ⚠️ **Slow inference speed**
</td>
<td width="33%">
#### βš–οΈ **Best Balance** πŸ†
**Recommended**: **`lightvaew2_1`**
- βœ… **Uses Causal 3D Conv** (same as official)
- βœ… **Excellent quality**, close to official
- βœ… Memory reduced by **~50%** (~4-5 GB)
- βœ… Speed increased by **2-3x**
- βœ… **Close to official quality** ⭐⭐⭐⭐
**Use Cases**: Daily production, strongly recommended ⭐
</td>
<td width="33%">
#### ⚑ **Speed + Quality Balance** ✨
**Recommended**: **`lighttaew2_1`** / **`lighttaew2_2`**
- βœ… Extremely low memory usage (~0.4 GB)
- βœ… Extremely fast inference
- βœ… **Quality significantly surpasses open source TAE**
- βœ… **Close to official quality** ⭐⭐⭐⭐
**Use Cases**: Development testing, rapid iteration
</td>
</tr>
</table>
### πŸ”₯ Our Optimization Results Comparison
| Comparison | Open Source TAE | **LightTAE (Ours)** | Official VAE | **LightVAE (Ours)** |
|:------|:--------|:---------------------|:---------|:---------------------|
| **Architecture** | Conv2D | Conv2D | Causal Conv3D | Causal Conv3D |
| **Memory Usage** | Minimal (~0.4 GB) | Minimal (~0.4 GB) | Large (~8-12 GB) | Medium (~4-5 GB) |
| **Inference Speed** | Extremely Fast ⚑⚑⚑⚑⚑ | Extremely Fast ⚑⚑⚑⚑⚑ | Slow ⚑⚑ | Fast ⚑⚑⚑⚑ |
| **Generation Quality** | Average ⭐⭐⭐ | **Close to Official** ⭐⭐⭐⭐ | Highest ⭐⭐⭐⭐⭐ | **Close to Official** ⭐⭐⭐⭐ |
## πŸ“‘ Todo List
- [x] LightX2V integration
- [x] ComfyUI integration
- [ ] Training & Distillation Code
## πŸš€ Usage
### Download VAE Models
```bash
# Download Wan2.1 official VAE
huggingface-cli download lightx2v/Autoencoders \
--local-dir ./models/vae/
```
### πŸ§ͺ Video Reconstruction Test
We provide a standalone script `vid_recon.py` to test VAE models independently. This script reads a video, encodes it through VAE, then decodes it back to verify the reconstruction quality.
**Script Location**: `LightX2V/lightx2v/models/video_encoders/hf/vid_recon.py`
```bash
git clone https://github.com/ModelTC/LightX2V.git
cd LightX2V
```
**1. Test Official VAE (Wan2.1)**
```bash
python -m lightx2v.models.video_encoders.hf.vid_recon \
input_video.mp4 \
--checkpoint ./models/vae/Wan2.1_VAE.pth \
--model_type vaew2_1 \
--device cuda \
--dtype bfloat16
```
**2. Test Official VAE (Wan2.2)**
```bash
python -m lightx2v.models.video_encoders.hf.vid_recon \
input_video.mp4 \
--checkpoint ./models/vae/Wan2.2_VAE.pth \
--model_type vaew2_2 \
--device cuda \
--dtype bfloat16
```
**3. Test LightTAE (Wan2.1)**
```bash
python -m lightx2v.models.video_encoders.hf.vid_recon \
input_video.mp4 \
--checkpoint ./models/vae/lighttaew2_1.pth \
--model_type taew2_1 \
--device cuda \
--dtype bfloat16
```
**4. Test LightTAE (Wan2.2)**
```bash
python -m lightx2v.models.video_encoders.hf.vid_recon \
input_video.mp4 \
--checkpoint ./models/vae/lighttaew2_2.pth \
--model_type taew2_2 \
--device cuda \
--dtype bfloat16
```
**5. Test LightVAE (Wan2.1)**
```bash
python -m lightx2v.models.video_encoders.hf.vid_recon \
input_video.mp4 \
--checkpoint ./models/vae/lightvaew2_1.pth \
--model_type vaew2_1 \
--device cuda \
--dtype bfloat16 \
--use_lightvae
```
**6. Test TAE (Wan2.1)**
```bash
python -m lightx2v.models.video_encoders.hf.vid_recon \
input_video.mp4 \
--checkpoint ./models/vae/taew2_1.pth \
--model_type taew2_1 \
--device cuda \
--dtype bfloat16
```
**7. Test TAE (Wan2.2)**
```bash
python -m lightx2v.models.video_encoders.hf.vid_recon \
input_video.mp4 \
--checkpoint ./models/vae/taew2_2.pth \
--model_type taew2_1 \
--device cuda \
--dtype bfloat16
```
### Use in LightX2V
Specify the VAE path in the configuration file:
**Using Official VAE Series:**
```json
{
"vae_path": "./models/vae/Wan2.1_VAE.pth"
}
```
**Using LightVAE Series:**
```json
{
"use_lightvae": true,
"vae_path": "./models/vae/lightvaew2_1.pth"
}
```
**Using LightTAE Series:**
```json
{
"use_tae": true,
"need_scaled": true,
"tae_path": "./models/vae/lighttaew2_1.pth"
}
```
**Using TAE Series:**
```json
{
"use_tae": true,
"tae_path": "./models/vae/taew2_1.pth"
}
```
Then run the inference script:
```bash
cd LightX2V/scripts
bash wan/run_wan_i2v.sh # or other inference scripts
```
### Use in ComfyUI
please refer to https://github.com/ModelTC/ComfyUI-LightVAE
## ⚠️ Important Notes
### 1. Compatibility
- Wan2.1 series VAE only works with Wan2.1 backbone models
- Wan2.2 series VAE only works with Wan2.2 backbone models
- Do not mix different versions of VAE and backbone models
## πŸ“š Related Resources
### Documentation Links
- **LightX2V Quick Start**: [Quick Start Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/quickstart.html)
- **Model Structure Description**: [Model Structure Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/model_structure.html)
- **taeHV Project**: [GitHub - madebyollin/taeHV](https://github.com/madebyollin/taeHV)
### Related Models
- **Wan2.1 Backbone Models**: [Wan-AI Model Collection](https://huggingface.co/Wan-AI)
- **Wan2.2 Backbone Models**: [Wan-AI/Wan2.2-TI2V-5B](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B)
- **LightX2V Optimized Models**: [lightx2v Model Collection](https://huggingface.co/lightx2v)
---
## 🀝 Community & Support
- **GitHub Issues**: https://github.com/ModelTC/LightX2V/issues
- **HuggingFace**: https://huggingface.co/lightx2v
- **LightX2V Homepage**: https://github.com/ModelTC/LightX2V
If you find this project helpful, please give us a ⭐ on [GitHub](https://github.com/ModelTC/LightX2V)