bge-finetuned-ner
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0827
- Precision: 0.9125
- Recall: 0.9305
- F1: 0.9214
- Accuracy: 0.9831
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.2101 | 1.0 | 626 | 0.1545 | 0.7855 | 0.8270 | 0.8057 | 0.9626 |
| 0.0968 | 2.0 | 1252 | 0.0966 | 0.8584 | 0.9098 | 0.8833 | 0.9762 |
| 0.076 | 3.0 | 1878 | 0.0822 | 0.9011 | 0.9123 | 0.9067 | 0.9799 |
| 0.0392 | 4.0 | 2504 | 0.0787 | 0.8992 | 0.9216 | 0.9102 | 0.9810 |
| 0.0257 | 5.0 | 3130 | 0.0812 | 0.8941 | 0.9249 | 0.9093 | 0.9807 |
| 0.0242 | 6.0 | 3756 | 0.0800 | 0.9029 | 0.9283 | 0.9154 | 0.9817 |
| 0.0115 | 7.0 | 4382 | 0.0799 | 0.9056 | 0.9278 | 0.9165 | 0.9824 |
| 0.0159 | 8.0 | 5008 | 0.0827 | 0.9125 | 0.9305 | 0.9214 | 0.9831 |
| 0.0145 | 9.0 | 5634 | 0.0840 | 0.9133 | 0.9288 | 0.9210 | 0.9833 |
| 0.0086 | 10.0 | 6260 | 0.0851 | 0.9125 | 0.9290 | 0.9207 | 0.9830 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.8.0+cu126
- Datasets 3.4.1
- Tokenizers 0.21.4
- Downloads last month
- 10
Model tree for maratgalyavov/bge-finetuned-ner
Base model
BAAI/bge-small-en-v1.5