FP8 quants
Collection
A collection of my FP8 quants for models missing this.
•
2 items
•
Updated
•
1
FP8 quantized version of zai-org/GLM-4.7-Flash.
Also, see Unsloth's new unsloth/GLM-4.7-Flash-FP8-Dynamic
Tested on 2x RTX 3090 (24GB each) with vLLM 0.13.0:
| Setting | Value |
|---|---|
| Tensor Parallel | 2 |
| Context Length | 8192 |
| VRAM per GPU | 14.7 GB |
| Throughput | 19.4 tokens/sec |
Note: RTX 3090 lacks native FP8 support, so vLLM uses the Marlin kernel for weight-only FP8 decompression. GPUs with native FP8 (RTX 40xx, Ada Lovelace+) will achieve higher throughput.
Requires vLLM 0.13.0+ and transformers 5.0+ for glm4_moe_lite architecture support.
from vllm import LLM, SamplingParams
llm = LLM(
model="marksverdhei/GLM-4.7-Flash-fp8",
tensor_parallel_size=2,
max_model_len=8192,
enforce_eager=True, # Optional: disable CUDA graphs to save VRAM
)
outputs = llm.generate(["Hello, world!"], SamplingParams(max_tokens=100))
print(outputs[0].outputs[0].text)
MIT (same as base model)
Base model
zai-org/GLM-4.7-Flash