Multimodal Doc Models – Iterations up to [Feb 2026]
Collection
Iterations of my doc ocr models timeline of continual training built on top of qwen-vl models.
•
8 items
•
Updated
•
1
The Delorme_1-OCR-7B-Post1.0 model is a refined and optimized version of Gliese-OCR-7B-Post1.0, built upon the Qwen2.5-VL architecture. It represents the final iteration in the OCR series, offering enhanced efficiency, precision, and visualization capabilities for document OCR, visual analysis, and information extraction. Fine-tuned with extended document visualization data and OCR-focused objectives, this model delivers superior accuracy across a wide range of document types, including scanned PDFs, handwritten pages, structured forms, and analytical reports.
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"prithivMLmods/Delorme_1-OCR-7B-Post1.0", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/Delorme_1-OCR-7B-Post1.0")
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
{"type": "text", "text": "Describe the document structure and extract key text content."},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
print(output_text)
Base model
Qwen/Qwen2.5-VL-7B-Instruct