UncheatableEval / data_manager.py
Jellyfish042's picture
refactor: reorganize data source into categorized groups with toggles
80e2f77
import pandas as pd
import re
from pathlib import Path
from typing import List, Tuple, Optional
import json
import math
import os
from typing import Dict
class DataManager:
def __init__(self, data_dir: str):
self.data_dir = Path(data_dir)
self.master_df = self._load_all_data()
def _load_old_format_folder(self, period_dir: Path) -> pd.DataFrame:
all_xlsx_data = []
period = period_dir.name
for file_path in period_dir.iterdir():
if file_path.suffix != ".xlsx":
continue
model_group = file_path.stem
xls = pd.read_excel(file_path, sheet_name=None)
for sheet_name, df in xls.items():
if df.empty:
continue
df = self._clean_dataframe(df)
df["Period"] = period
df["Metric"] = sheet_name
df["Model Group"] = model_group
all_xlsx_data.append(df)
return all_xlsx_data
def _load_new_format_folder(self, period_dir: Path) -> pd.DataFrame:
raw_records = []
period = period_dir.name
for file_path in period_dir.rglob("*.json"):
with open(file_path, "r", encoding="utf-8") as f:
data = json.load(f)
full_path = data["model_name_or_path"]
model_name = full_path.split("/")[-1].replace(".pth", "")
params = data["parameters count"]
data_path = data["data_path"]
source_col = data_path.split("-")[-1]
neg_log_prob = data["neg_log_prob_sum"]
avg_char = data["avg character count"]
avg_bytes = data["avg bytes"]
metrics = {}
metrics["cr"] = data["compression_rate"]
metrics["bpc"] = (neg_log_prob / avg_char) * (1 / math.log(2))
metrics["bpb"] = (neg_log_prob / avg_bytes) * (1 / math.log(2))
for metric_type, value in metrics.items():
if value is not None:
raw_records.append(
{
"Name": model_name,
"Params (B)": params,
"Period": period,
"Metric": metric_type,
"Model Group": "other",
"Source": source_col,
"Value": value,
}
)
if not raw_records:
return []
df_long = pd.DataFrame(raw_records)
df_wide = df_long.pivot_table(
index=["Name", "Params (B)", "Period", "Metric", "Model Group"],
columns="Source",
values="Value",
).reset_index()
df_wide.columns.name = None
def assign_group(p):
if p >= 12:
return "14b"
if p >= 9:
return "9b"
if p >= 6:
return "7b"
if p >= 2.5:
return "3b"
if p >= 1:
return "1b5"
return "other"
df_wide["Model Group"] = df_wide["Params (B)"].apply(assign_group)
metadata_cols = ["Name", "Params (B)", "Period", "Metric", "Model Group"]
new_columns = {}
for col in df_wide.columns:
if col not in metadata_cols:
new_columns[col] = col.replace("_", " ")
df_wide = df_wide.rename(columns=new_columns)
return [df_wide]
def _load_all_data(self) -> pd.DataFrame:
all_records = []
if not self.data_dir.exists():
print(f"Warning: Directory {self.data_dir} does not exist.")
return pd.DataFrame()
period_dirs = [d for d in self.data_dir.iterdir() if d.is_dir() and re.match(r"^\d{4}-\d{2}$", d.name)]
for period_dir in period_dirs:
if period_dir.name <= "2025-11":
all_records.extend(self._load_old_format_folder(period_dir))
else:
all_records.extend(self._load_new_format_folder(period_dir))
if not all_records:
return pd.DataFrame()
final_df = pd.concat(all_records, ignore_index=True)
exclude_cols = ["Name", "Period", "Metric", "Model Group"]
numeric_cols = [c for c in final_df.columns if c not in exclude_cols]
for col in numeric_cols:
final_df[col] = pd.to_numeric(final_df[col], errors="coerce")
return final_df
def _clean_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
df = df.dropna(axis=1, how="all")
new_columns = []
for col in df.columns:
col_str = str(col)
if "Parameters" in col_str:
new_columns.append("Params (B)")
elif col_str == "Average (The lower the better)":
new_columns.append("Average (lower=better)")
else:
new_columns.append(col_str.rsplit("_", maxsplit=1)[0].replace("\u200b", "")) # 去除_202xxxxx后缀
df.columns = new_columns
column_mapping = {col: col.replace("_", " ") for col in df.columns}
df = df.rename(columns=column_mapping)
return df
def get_available_periods(self) -> List[str]:
"""返回所有可用的时间周期,已排序,从旧到新"""
if self.master_df.empty:
return []
return sorted(self.master_df["Period"].unique().tolist())
def get_available_columns(self, period: str) -> List[str]:
"""获取特定时间段内的数据列(排除元数据列和全部为NaN的列)"""
if self.master_df.empty:
return []
subset = self.master_df[self.master_df["Period"] == period]
if subset.empty:
return []
metadata_cols = ["Name", "Params (B)", "Period", "Metric", "Model Group", "Average (lower=better)"]
return [c for c in subset.columns if c not in metadata_cols and not subset[c].isna().all()]
def query(
self,
period: str,
metric_code: str,
param_range: Tuple[float, float],
model_groups: Optional[List[str]] = None,
visible_columns: Optional[List[str]] = None,
) -> pd.DataFrame:
"""
统一查询接口。
Args:
period: 时间周期 (e.g. "2025-12")
metric_display_name: bpc, bpb, cr
param_range: 参数量范围元组 (min, max)
model_groups: (可选) 文件名列表,如 ['14b', '7b']
visible_columns: (可选) 需要参与计算平均值的列名列表
"""
mask = (
(self.master_df["Period"] == period)
& (self.master_df["Metric"] == metric_code)
& (self.master_df["Params (B)"].between(param_range[0], param_range[1]))
)
if model_groups is not None:
if len(model_groups) == 0:
return pd.DataFrame()
mask = mask & (self.master_df["Model Group"].isin(model_groups))
filtered_df = self.master_df.loc[mask].copy()
if filtered_df.empty:
return filtered_df
# 始终排除的列
exclude_cols = ["Period", "Metric", "Model Group"]
# 始终保留的列
metadata_cols = ["Name", "Params (B)", "Average (lower=better)"]
if visible_columns is not None:
valid_visible_cols = [c for c in visible_columns if c in filtered_df.columns]
columns_to_keep = metadata_cols + valid_visible_cols
cols_for_average = valid_visible_cols
else:
all_cols = [c for c in filtered_df.columns if c not in exclude_cols]
columns_to_keep = all_cols
cols_for_average = [c for c in all_cols if c not in metadata_cols]
if not cols_for_average:
return pd.DataFrame()
filtered_df["Average (lower=better)"] = filtered_df[cols_for_average].mean(axis=1).round(3)
columns_to_keep = [c for c in columns_to_keep if c not in exclude_cols]
columns_to_keep = list(dict.fromkeys(columns_to_keep))
filtered_df = filtered_df[columns_to_keep]
if "Name" in filtered_df.columns:
filtered_df["Name"] = filtered_df["Name"].apply(lambda x: x.replace(".pth", ""))
filtered_df = filtered_df.sort_values(by="Average (lower=better)", ascending=True, kind="mergesort", na_position="last").reset_index(
drop=True
)
fixed_cols = ["Name", "Params (B)", "Average (lower=better)"]
column_priority = [
# 代码 (Code)
"github cpp",
"github python",
"github javascript",
# 科研 (Research)
"arxiv physics",
"arxiv cs",
"arxiv math",
# 写作 (Writing)
"ao3 english",
"github markdown",
# 世界知识 (World Knowledge)
"bbc news",
"wikipedia english",
]
existing_cols = filtered_df.columns.tolist()
ordered_cols = []
for col in fixed_cols:
if col in existing_cols:
ordered_cols.append(col)
for col in column_priority:
if col in existing_cols and col not in ordered_cols:
ordered_cols.append(col)
for col in existing_cols:
if col not in ordered_cols:
ordered_cols.append(col)
filtered_df = filtered_df[ordered_cols]
return filtered_df
class LongContextDataManager:
def __init__(self, data_dir: str):
self.data_dir = data_dir
# { period: { "Display Name": "full_path" } }
self.period_file_map = {}
# { period: { "Model Name": ["path1", "path2"] } }
self.period_model_map = {}
# { period: { "Dataset Name": set(["path1", "path2"]) } }
self.period_dataset_map = {}
# { period: { "Model Name": { "Dataset Name": ["path1", "path2"] } } }
self.period_model_dataset_map = {}
self._scan_directories()
def _scan_directories(self):
for root, dirs, files in os.walk(self.data_dir):
json_files = [f for f in files if f.endswith(".json")]
if json_files:
period = os.path.basename(root)
if period not in self.period_file_map:
self.period_file_map[period] = {}
self.period_model_map[period] = {}
self.period_dataset_map[period] = {}
self.period_model_dataset_map[period] = {}
for jf in json_files:
full_path = os.path.join(root, jf)
with open(full_path, "r", encoding="utf-8") as f:
meta = json.load(f)
model_name = meta.get("model_name_or_path", jf.replace(".json", "")).split("/")[-1].replace(".pth", "")
data_path = meta.get("data_path", "").replace("UncheatableEval-", "")
dataset_name = data_path.split("/")[-1] if data_path else "Unknown"
file_display_label = f"{model_name}-{dataset_name}"
print(file_display_label)
self.period_file_map[period][file_display_label] = full_path
if model_name not in self.period_model_map[period]:
self.period_model_map[period][model_name] = []
self.period_model_map[period][model_name].append(full_path)
if dataset_name not in self.period_dataset_map[period]:
self.period_dataset_map[period][dataset_name] = []
self.period_dataset_map[period][dataset_name].append(full_path)
if model_name not in self.period_model_dataset_map[period]:
self.period_model_dataset_map[period][model_name] = {}
if dataset_name not in self.period_model_dataset_map[period][model_name]:
self.period_model_dataset_map[period][model_name][dataset_name] = []
self.period_model_dataset_map[period][model_name][dataset_name].append(full_path)
def get_available_periods(self):
return sorted(list(self.period_file_map.keys()))
def get_file_choices(self, period):
"""返回 [(Display Name, Full Path), ...]"""
if period not in self.period_file_map:
return []
return [(k, v) for k, v in self.period_file_map[period].items()]
def get_model_choices(self, period):
"""返回 [(Model Name, Model Name), ...]"""
if period not in self.period_model_map:
return []
return [(k, k) for k in self.period_model_map[period].keys()]
def get_paths_for_model(self, period, model_name):
return self.period_model_map.get(period, {}).get(model_name, [])
def get_dataset_choices(self, period):
"""返回某个period下的所有数据集列表 [(Dataset Name, Dataset Name), ...]"""
if period not in self.period_dataset_map:
return []
return [(k, k) for k in sorted(self.period_dataset_map[period].keys())]
def get_paths_for_model_and_datasets(self, period, model_name, dataset_names):
"""根据模型名称和数据集名称列表,返回对应的文件路径列表"""
if period not in self.period_model_dataset_map:
return []
if model_name not in self.period_model_dataset_map[period]:
return []
paths = []
for dataset_name in dataset_names:
if dataset_name in self.period_model_dataset_map[period][model_name]:
paths.extend(self.period_model_dataset_map[period][model_name][dataset_name])
return paths
if __name__ == "__main__":
# dm = DataManager("data")
# periods = dm.get_available_periods()
# print(f"Total records loaded: {len(dm.master_df)}")
# print(f"Available periods: {periods}")
# print(f"Available columns: {dm.get_available_columns('2025-11')}")
# result = dm.query(
# period="2025-11",
# metric_code="cr",
# param_range=(0, 20),
# model_groups=["7b"],
# visible_columns=["wikipedia_english"],
# )
# print(result.head(20))
lcm = LongContextDataManager("longctx_data")