arkai2025's picture
refactor(config): centralize scenario configuration defaults
85cbecd
"""
Fire-Rescue MCP - Simulation Service
Background service that manages simulation loop and LLM advisor evaluations.
Designed for integration with Gradio and HTTP API endpoints.
"""
import asyncio
import concurrent.futures
import html
import json
import os
import threading
import time
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Callable, Optional
from agent import (
AdvisorAgent,
AdvisorResponse,
AfterActionReport,
AssessmentResult,
PlanResult,
CycleSummary,
)
from config import range_text
from fire_rescue_mcp.mcp_client import LocalFastMCPClient
from fire_rescue_mcp.mcp_server import attach_engine, detach_engine, mcp as fastmcp_server
from models import SimulationStatus, CellType
from simulation import SimulationEngine
FIRE_COUNT_RANGE_TEXT = range_text("fire_count")
BUILDING_COUNT_RANGE_TEXT = range_text("building_count")
ADVISOR_MODEL_CHOICES = {
"GPT-OSS Β· HuggingFace (openai/gpt-oss-120b)": {
"provider": "hf",
"model": "openai/gpt-oss-120b",
"description": "Default OSS advisor routed through HuggingFace Inference",
},
"GPT-OSS-20B Β· HuggingFace (openai/gpt-oss-20b)": {
"provider": "hf",
"model": "openai/gpt-oss-20b",
"description": "OpenAI GPT-OSS 20B model via HuggingFace Inference",
},
"Llama-3.1 Β· HuggingFace (meta-llama/Llama-3.1-8B-Instruct)": {
"provider": "hf",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"description": "Meta Llama-3.1 8B Instruct model via HuggingFace Inference",
},
"OpenAI Β· gpt-5.1": {
"provider": "openai",
"model": "gpt-5.1",
"description": "Flagship GPT-5.1 via native OpenAI API",
},
}
DEFAULT_ADVISOR_MODEL_CHOICE = "GPT-OSS Β· HuggingFace (openai/gpt-oss-120b)"
def generate_emoji_map(engine: SimulationEngine) -> str:
"""
Generate an emoji-based visualization of the current world state.
Matches Gradio UI: 🌲Forest 🏒Building πŸ”₯Fire πŸ’¨Smoke πŸš’Truck 🚁Heli
"""
if engine.world is None:
return "No map available"
world = engine.world
# Create unit position lookup
unit_positions = {}
for unit in world.units:
key = (unit.x, unit.y)
if key not in unit_positions:
unit_positions[key] = []
unit_positions[key].append(unit.unit_type.value)
# Build the map with coordinates
lines = []
# Header with X coordinates
header = " " + "".join(f"{x:2}" for x in range(world.width))
lines.append(header)
for y in range(world.height):
row_chars = []
for x in range(world.width):
cell = world.grid[y][x]
pos = (x, y)
# Priority: Units > Fire > Terrain
if pos in unit_positions:
if "fire_truck" in unit_positions[pos]:
row_chars.append("πŸš’")
else:
row_chars.append("🚁")
elif cell.fire_intensity > 0:
if cell.fire_intensity >= 0.1:
row_chars.append("πŸ”₯")
else:
row_chars.append("πŸ’¨")
else:
if cell.cell_type == CellType.BUILDING:
row_chars.append("🏒")
elif cell.cell_type == CellType.FOREST:
row_chars.append("🌲")
else:
row_chars.append("⬜")
lines.append(f"{y:2} " + "".join(row_chars))
return "\n".join(lines)
@dataclass
class LogEntry:
"""A single log entry for the simulation."""
timestamp: str
tick: int
event_type: str # "advisor", "deploy", "status", "error"
message: str
details: Optional[dict] = None
def to_dict(self) -> dict:
return {
"timestamp": self.timestamp,
"tick": self.tick,
"event_type": self.event_type,
"message": self.message,
"details": self.details
}
@dataclass
class SimulationService:
"""
Service that manages the simulation lifecycle and LLM advisor.
Provides:
- Background simulation loop
- Periodic LLM advisor evaluations
- Thread-safe state access
- Event logging
"""
# Configuration
tick_interval: float = 1.0 # Seconds between simulation ticks (slower pace)
advisor_interval: int = 10 # Ticks between advisor evaluations
# Internal state
engine: SimulationEngine = field(default_factory=SimulationEngine)
advisor: AdvisorAgent = field(default_factory=AdvisorAgent)
# Runtime state
_running: bool = False
_thread: Optional[threading.Thread] = None
_lock: threading.RLock = field(default_factory=threading.RLock)
# Logs and recommendations
_logs: list[LogEntry] = field(default_factory=list)
_latest_recommendations: Optional[AdvisorResponse] = None
_on_update: Optional[Callable] = None # Callback for UI updates
# Thinking state for UI display - Progressive stage rendering
_is_thinking: bool = False
_thinking_start_tick: int = 0
_current_stage: int = 0 # 0=idle, 1=assess, 2=plan, 3=execute, 4=summary, 5=complete
_current_cycle_messages: list = field(default_factory=list) # Messages for current cycle
# Advisor message history for chatbot display
_advisor_history: list[dict] = field(default_factory=list)
_cycle_summaries: list[dict] = field(default_factory=list)
_metrics_history: list[dict] = field(default_factory=list)
_threat_history: list[dict] = field(default_factory=list)
_action_history: list[dict] = field(default_factory=list)
_player_actions: list[dict] = field(default_factory=list)
# MCP integration
_mcp_client: LocalFastMCPClient | None = None
_mcp_call_log: list[dict] = field(default_factory=list)
_mcp_log_dirty: bool = False
_last_mcp_log: str = ""
# Advisor call control
_advisor_running: bool = False # Prevent concurrent advisor calls
advisor_timeout: float = 30.0 # Timeout for AI calls (seconds)
advisor_max_retries: int = 3 # Max retry attempts
# Game result popup control
_result_shown: bool = False # Track if game result popup has been shown
_result_dismissed: bool = False # Track if player dismissed the result popup
_result_report: Optional[AfterActionReport] = None
_result_report_status: str = "idle"
_result_report_error: str = ""
_last_result_signature: str = ""
_last_result_payload_signature: str = ""
# Auto-execute AI recommendations
_auto_execute: bool = True # Whether to automatically execute AI recommendations
_executed_recommendations: set = field(default_factory=set) # Track executed recommendations
_session_owner_id: str = ""
_attached_session_id: str = ""
_model_choice: str = DEFAULT_ADVISOR_MODEL_CHOICE
# Simulation loop state (preserved across pause/resume)
_tick_count: int = 0 # Current tick count in simulation loop
_advisor_first_run: bool = True # Whether first advisor run has happened
# Change tracking for UI optimization (prevents unnecessary re-renders)
_last_grid_hash: str = "" # Hash of grid state (fires, units, buildings)
_last_advisor_signature: tuple = field(default_factory=tuple) # Last advisor chat signature
_last_history_signature: tuple = field(default_factory=tuple) # Last history chat signature
_last_event_log: str = "" # Last event log text
_last_button_states: tuple = () # Last (start_enabled, pause_enabled)
_last_result_state: str = "" # Last result popup state ("", "success", "fail")
def __post_init__(self):
self._lock = threading.RLock()
self._logs = []
self._result_shown = False
self._result_dismissed = False
self._reset_after_action_report_locked()
self._is_thinking = False
self._current_stage = 0 # Progressive stage tracking
self._current_cycle_messages = [] # Current cycle messages
self._advisor_history = []
self._cycle_summaries = []
self._metrics_history = []
self._threat_history = []
self._action_history = []
self._player_actions = []
self._advisor_running = False
self._auto_execute = True
self._executed_recommendations = set()
self._tick_count = 0
self._advisor_first_run = True
self._session_owner_id = ""
# Change tracking initialization
self._last_grid_hash = ""
self._last_advisor_signature = ()
self._last_history_signature = ()
self._last_event_log = ""
self._last_button_states = (True, False)
self._last_result_state = ""
self._mcp_client = LocalFastMCPClient(fastmcp_server, self._record_mcp_call)
self._mcp_call_log = []
self._mcp_log_dirty = False
self._last_mcp_log = ""
def start(
self,
seed: Optional[int] = None,
fire_count: int = 4,
fire_intensity: float = 0.6,
building_count: int = 16,
max_units: int = 10,
session_id: Optional[str] = None,
on_update: Optional[Callable] = None
) -> dict:
f"""
Start a new simulation.
Args:
seed: Random seed for reproducibility
fire_count: Number of initial fire points ({FIRE_COUNT_RANGE_TEXT})
fire_intensity: Initial fire intensity (0.0-1.0)
building_count: Number of buildings to place ({BUILDING_COUNT_RANGE_TEXT})
on_update: Callback function called on state changes
Returns:
Initial world state
"""
# First stop any existing simulation
thread = None
with self._lock:
if self._running:
self._running = False
thread = self._thread
self._thread = None
# Wait for thread outside lock
if thread and thread.is_alive():
thread.join(timeout=2.0)
# Now start fresh with lock
with self._lock:
# Reset state
self._logs = []
self._latest_recommendations = None
self._advisor_history = [] # Clear advisor history
self._cycle_summaries = [] # Clear summaries
self._current_cycle_messages = [] # Clear current cycle
self._current_stage = 0 # Reset stage
self._is_thinking = False
self._result_shown = False # Reset result popup flag
self._result_dismissed = False # Reset dismissed flag
self._reset_after_action_report_locked()
self._executed_recommendations = set() # Clear executed recommendations
self._tick_count = 0 # Reset tick count
self._advisor_first_run = True # Reset first run flag
self._on_update = on_update
self._metrics_history = []
self._threat_history = []
self._action_history = []
self._player_actions = []
self._session_owner_id = session_id or ""
# Reset change tracking
self._last_grid_hash = ""
self._last_advisor_signature = ()
self._last_history_signature = ()
self._last_event_log = ""
self._last_button_states = (True, False)
self._last_result_state = ""
# Initialize simulation
self.engine.reset(
seed=seed,
fire_count=fire_count,
fire_intensity=fire_intensity,
building_count=building_count,
max_units=max_units
)
self._record_tick_metrics_locked(self.engine.get_state())
# Log start event
self._add_log("status", f"Simulation started: {fire_count} fires, {building_count} buildings, max {max_units} units")
# Start background loop
self._running = True
self._thread = threading.Thread(target=self._simulation_loop, daemon=True)
self._thread.start()
return self._compose_state_locked()
def resume(self, on_update: Optional[Callable] = None) -> dict:
"""
Resume a paused simulation.
Returns:
Current world state, or error if no paused simulation exists
"""
with self._lock:
# Check if there's a paused simulation to resume
if self.engine.world is None:
return {"status": "error", "message": "No simulation to resume"}
# Check if already running
if self._running:
return {"status": "error", "message": "Simulation is already running"}
# Check if simulation has ended
current_status = self.engine.world.status
if current_status in [SimulationStatus.SUCCESS, SimulationStatus.FAIL]:
return {"status": "error", "message": f"Simulation has ended ({current_status.value})"}
self._on_update = on_update
# Set status back to running
self.engine.world.status = SimulationStatus.RUNNING
# Log resume event
self._add_log("status", "Simulation resumed")
# Start background loop
self._running = True
self._thread = threading.Thread(target=self._simulation_loop, daemon=True)
self._thread.start()
return self._compose_state_locked()
def pause(self) -> dict:
"""Pause the simulation (can be resumed later)."""
# First set flag and get thread reference (with lock)
with self._lock:
self._running = False
thread = self._thread
self._thread = None
# Wait for thread outside lock to avoid deadlock
if thread and thread.is_alive():
thread.join(timeout=2.0)
with self._lock:
self._add_log("status", "Simulation paused")
# Keep status as RUNNING so we know it can be resumed
# (IDLE means no game, SUCCESS/FAIL means game ended)
if self.engine.world:
return self._compose_state_locked()
return {"status": "idle", "after_action_report": self._get_after_action_report_payload_locked()}
def is_paused(self) -> bool:
"""Check if simulation is paused (has world but not running)."""
with self._lock:
if self.engine.world is None:
return False
# Paused = has world, not running, and status is still RUNNING
return (
not self._running
and self.engine.world.status == SimulationStatus.RUNNING
)
def can_resume_session(self, session_id: Optional[str]) -> bool:
"""Check if the provided session owns the paused simulation."""
if not session_id:
return False
with self._lock:
if (
not self.engine.world
or self._session_owner_id != session_id
):
return False
return (
not self._running
and self.engine.world.status == SimulationStatus.RUNNING
)
def _stop_internal(self):
"""Internal stop - sets flag only (must be called with lock held)."""
self._running = False
def reset(
self,
seed: Optional[int] = None,
fire_count: int = 4,
fire_intensity: float = 0.6,
building_count: int = 16,
max_units: int = 10,
session_id: Optional[str] = None,
) -> dict:
"""Reset simulation without starting the loop."""
# First stop any running simulation
thread = None
with self._lock:
if self._running:
self._running = False
thread = self._thread
self._thread = None
# Wait for thread outside lock to avoid deadlock
if thread and thread.is_alive():
thread.join(timeout=2.0)
# Now reset with lock
with self._lock:
self._logs = []
self._latest_recommendations = None
self._advisor_history = [] # Clear advisor history
self._cycle_summaries = [] # Clear summaries
self._current_cycle_messages = [] # Clear current cycle
self._current_stage = 0 # Reset stage
self._is_thinking = False
self._result_shown = False # Reset result popup flag
self._result_dismissed = False # Reset dismissed flag
self._reset_after_action_report_locked()
self._executed_recommendations = set() # Clear executed recommendations
self._tick_count = 0 # Reset tick count
self._advisor_first_run = True # Reset first run flag
self._metrics_history = []
self._threat_history = []
self._action_history = []
self._session_owner_id = session_id or ""
# Reset change tracking
self._last_grid_hash = ""
self._last_advisor_signature = ()
self._last_history_signature = ()
self._last_event_log = ""
self._last_button_states = (True, False)
self._last_result_state = ""
self.engine.reset(
seed=seed,
fire_count=fire_count,
fire_intensity=fire_intensity,
building_count=building_count,
max_units=max_units
)
self._record_tick_metrics_locked(self.engine.get_state())
self._add_log("status", f"Simulation reset: {fire_count} fires, {building_count} buildings, max {max_units} units")
return self._compose_state_locked()
def get_state(self) -> dict:
"""Get current world state (thread-safe)."""
with self._lock:
if self.engine.world is None:
return {
"status": "idle",
"message": "No simulation running",
"after_action_report": self._get_after_action_report_payload_locked(),
}
return self._compose_state_locked()
def _compose_state_locked(self) -> dict:
"""Attach after-action report payload to the current engine state."""
state = self.engine.get_state()
state["after_action_report"] = self._get_after_action_report_payload_locked()
return state
def _reset_after_action_report_locked(self):
"""Clear cached after-action report data."""
self._result_report = None
self._result_report_status = "idle"
self._result_report_error = ""
self._last_result_signature = ""
self._last_result_payload_signature = ""
def _record_cycle_summary(self, tick: int, cycle_summary: CycleSummary, state_snapshot: Optional[dict] = None):
"""Store Stage 4 summary for each advisor cycle, including metrics for charts."""
state_snapshot = state_snapshot or {}
metrics = {
"tick": tick,
"fires": len(state_snapshot.get("fires", [])),
"units": len(state_snapshot.get("units", [])),
"max_units": state_snapshot.get("max_units", 0),
"building_integrity": state_snapshot.get("building_integrity", 1.0),
}
entry = {
"tick": tick,
"headline": cycle_summary.headline,
"threat_level": cycle_summary.threat_level,
"key_highlights": cycle_summary.key_highlights,
"risks": cycle_summary.risks,
"next_focus": cycle_summary.next_focus,
"metrics": metrics,
}
self._cycle_summaries.append(entry)
if len(self._cycle_summaries) > 30:
self._cycle_summaries = self._cycle_summaries[-30:]
threat_value_map = {"CRITICAL": 4, "HIGH": 3, "MODERATE": 2, "LOW": 1}
value = threat_value_map.get(cycle_summary.threat_level.upper(), 0) if cycle_summary.threat_level else 0
self._threat_history.append({
"tick": tick,
"threat_level": cycle_summary.threat_level,
"value": value,
})
if len(self._threat_history) > 120:
self._threat_history = self._threat_history[-120:]
def _record_tick_metrics_locked(self, state: Optional[dict]):
"""Capture per-tick metrics for after-action chart visualization."""
if not state:
return
entry = {
"tick": state.get("tick", 0),
"fires": len(state.get("fires", [])),
"units": len(state.get("units", [])),
"max_units": state.get("max_units") or getattr(self.engine.world, "max_units", 0) if self.engine.world else 0,
"building_integrity": state.get("building_integrity", 1.0),
}
self._metrics_history.append(entry)
if len(self._metrics_history) > 600:
self._metrics_history = self._metrics_history[-600:]
def _record_action_breakdown(self, tick: int, deploy: int, move: int, replace: int):
"""Track how many actions the AI recommended per tick."""
self._action_history.append({
"tick": tick,
"deploy": deploy,
"move": move,
"replace": replace,
})
if len(self._action_history) > 200:
self._action_history = self._action_history[-200:]
def _record_player_action(self, action: str, description: str, metadata: Optional[dict] = None):
"""Track player-driven interventions (manual deploy/remove/fire)."""
if metadata is None:
metadata = {}
tick = 0
if self.engine and self.engine.world:
tick = getattr(self.engine.world, "tick", 0)
else:
tick = self._tick_count
entry = {
"tick": tick,
"timestamp": datetime.utcnow().isoformat(),
"action": action,
"description": description,
"details": dict(metadata),
}
self._player_actions.append(entry)
if len(self._player_actions) > 200:
self._player_actions = self._player_actions[-200:]
def _build_player_action_context(self) -> dict:
"""Summarize player-driven interventions for after-action reporting."""
actions = list(self._player_actions)
counts = {"deploy_unit": 0, "remove_unit": 0, "add_fire": 0}
action_meta = {
"deploy_unit": ("πŸš’", "Deployed units"),
"remove_unit": ("♻️", "Removed units"),
"add_fire": ("πŸ”₯", "Ignited fires"),
}
for entry in actions:
action_type = entry.get("action")
if action_type in counts:
counts[action_type] += 1
total = sum(counts.values())
if total:
parts = [f"Player executed {total} manual action(s)."]
if counts["deploy_unit"]:
parts.append(f"πŸš’ Deploy: {counts['deploy_unit']} time(s)")
if counts["remove_unit"]:
parts.append(f"♻️ Remove: {counts['remove_unit']} time(s)")
if counts["add_fire"]:
parts.append(f"πŸ”₯ Ignite: {counts['add_fire']} time(s)")
summary = " ".join(parts)
else:
summary = "Player has not manually deployed, removed, or ignited anything this run."
recent_entries = list(reversed(actions[-6:]))
recent = [
{
"tick": entry.get("tick", 0),
"description": entry.get("description", ""),
"action": entry.get("action"),
"timestamp": entry.get("timestamp"),
}
for entry in recent_entries
]
markdown_lines = [summary]
if recent:
markdown_lines.append("")
markdown_lines.append("**Recent player actions**")
for entry in recent:
icon = action_meta.get(entry["action"], ("πŸ“", ""))[0]
markdown_lines.append(f"- Tick {entry['tick']} Β· {icon} {entry['description']}")
markdown = "\n".join(markdown_lines).strip()
return {
"total": total,
"counts": counts,
"recent": recent,
"summary": summary,
"markdown": markdown,
}
def _record_mcp_call(self, entry: dict[str, Any]) -> None:
"""Capture MCP tool invocations for UI display."""
with self._lock:
cloned = dict(entry)
cloned.setdefault("local_timestamp", datetime.now().strftime("%H:%M:%S"))
self._mcp_call_log.append(cloned)
if len(self._mcp_call_log) > 80:
self._mcp_call_log = self._mcp_call_log[-80:]
self._mcp_log_dirty = True
def _get_mcp_log_text_locked(self, limit: int = 20) -> str:
"""Format MCP tool logs for UI display."""
if not self._mcp_call_log:
return "No MCP tool calls yet..."
lines = []
for entry in self._mcp_call_log[-limit:]:
ts = entry.get("local_timestamp", entry.get("timestamp", ""))
tool = entry.get("tool", "unknown")
args = entry.get("arguments", {})
args_preview = ", ".join(f"{k}={v}" for k, v in list(args.items())[:3])
result = entry.get("result", {})
status = result.get("status", "ok") if isinstance(result, dict) else "ok"
duration = entry.get("duration_ms", 0)
lines.append(f"[{ts}] {tool}({args_preview}) β†’ {status} ({duration} ms)")
return "\n".join(lines)
def _get_after_action_report_payload_locked(self) -> dict:
"""Serialize after-action report state for UI consumption."""
payload: dict = {"status": self._result_report_status}
if self._result_report_status == "ready" and self._result_report:
payload["report"] = self._result_report.to_dict()
elif self._result_report_status == "error":
payload["error"] = self._result_report_error or "Unknown error"
return payload
def _call_mcp_tool(self, name: str, **kwargs: Any) -> dict[str, Any]:
"""Invoke a tool through the shared FastMCP client."""
session_id = self._session_owner_id or "default"
if not self._mcp_client:
self._mcp_client = LocalFastMCPClient(fastmcp_server, self._record_mcp_call)
if self._attached_session_id and self._attached_session_id != session_id:
detach_engine(self._attached_session_id)
self._attached_session_id = ""
if self._attached_session_id != session_id:
attach_engine(self.engine, session_id)
self._attached_session_id = session_id
try:
call_kwargs = dict(kwargs)
call_kwargs["session_id"] = session_id
return self._mcp_client.call_tool(name, **call_kwargs)
except Exception as exc: # pragma: no cover
self._add_log("error", f"MCP tool {name} failed: {exc}")
return {"status": "error", "message": str(exc)}
def shutdown(self) -> None:
"""Stop background threads and detach from MCP server."""
thread = None
with self._lock:
if self._running:
self._running = False
thread = self._thread
self._thread = None
if thread and thread.is_alive():
thread.join(timeout=2.0)
with self._lock:
if self._attached_session_id:
detach_engine(self._attached_session_id)
self._attached_session_id = ""
self._session_owner_id = ""
self._on_update = None
def _get_mcp_world_state(self) -> dict:
"""Fetch world state via the MCP tools with local fallback."""
state = self._call_mcp_tool("get_world_state")
if not isinstance(state, dict) or state.get("status") == "error":
state = self.engine.get_state()
def _maybe(name: str) -> dict[str, Any]:
data = self._call_mcp_tool(name)
return data if isinstance(data, dict) else {}
state["mcp_idle_units"] = _maybe("find_idle_units")
state["mcp_uncovered_fires"] = _maybe("find_uncovered_fires")
state["mcp_building_threats"] = _maybe("find_building_threats")
state["mcp_coverage"] = _maybe("analyze_coverage")
return state
def should_show_result(self) -> tuple[bool, bool]:
"""
Check if game result should be shown.
Returns:
tuple of (should_show, is_first_time)
- should_show: True if popup should be displayed
- is_first_time: True if this is the first time showing (needs render)
"""
with self._lock:
# Don't show if player already dismissed it
if self._result_dismissed:
return (False, False)
state = self.engine.get_state() if self.engine.world else {"status": "idle"}
status = state.get("status", "idle")
if status in ["success", "fail"]:
# Check if this is the first time showing
is_first_time = not self._result_shown
if is_first_time:
self._result_shown = True
return (True, is_first_time)
return (False, False)
def dismiss_result(self):
"""Dismiss the game result popup (called when player clicks it)."""
with self._lock:
self._result_dismissed = True
def get_result_status(self) -> str:
"""Get current result status."""
with self._lock:
if self.engine.world is None:
return "idle"
state = self.engine.get_state()
return state.get("status", "idle")
def _prepare_after_action_context_locked(self, outcome: str, state: dict) -> Optional[dict]:
"""Build context for after-action report generation."""
signature = f"{outcome}_{state.get('tick', 0)}_{len(self._logs)}"
if signature == self._last_result_signature:
return None
context = self._build_after_action_context_locked(outcome, state)
self._result_report_status = "pending"
self._result_report = None
self._result_report_error = ""
self._last_result_signature = signature
self._last_result_payload_signature = ""
return context
def _build_after_action_context_locked(self, outcome: str, state: dict) -> dict:
"""Assemble transcripts and metrics for the after-action LLM call."""
outcome_label = "Victory" if outcome == "success" else "Defeat"
fires_remaining = len(state.get("fires", []))
units_active = len(state.get("units", []))
building_integrity = state.get("building_integrity", 1.0)
integrity_percent = f"{building_integrity:.0%}" if isinstance(building_integrity, (int, float)) else "N/A"
stage_messages = self._current_cycle_messages[:] if self._current_cycle_messages else self._advisor_history[-3:]
transcripts = {"assessment_md": "", "planning_md": "", "execution_md": ""}
for msg in stage_messages:
content = msg.get("content", "")
if not content:
continue
lowered = content.lower()
if "stage 1" in lowered and not transcripts["assessment_md"]:
transcripts["assessment_md"] = content
elif "stage 2" in lowered and not transcripts["planning_md"]:
transcripts["planning_md"] = content
elif "stage 3" in lowered and not transcripts["execution_md"]:
transcripts["execution_md"] = content
summary_text = (
f"Tick {state.get('tick', 0)} Β· Fires {fires_remaining} Β· "
f"Units {units_active}/{state.get('max_units', 0)} Β· Building Integrity {integrity_percent}"
)
if self._metrics_history:
chart_points = [dict(point) for point in self._metrics_history]
else:
chart_points = []
for entry in self._cycle_summaries:
metrics = entry.get("metrics") or {}
if not metrics:
continue
chart_points.append({
"tick": metrics.get("tick", entry.get("tick")),
"fires": metrics.get("fires", 0),
"units": metrics.get("units", 0),
"max_units": metrics.get("max_units", state.get("max_units", 0)),
"building_integrity": metrics.get("building_integrity", building_integrity),
})
context = {
"outcome": outcome,
"outcome_label": outcome_label,
"tick": state.get("tick", 0),
"fires_remaining": fires_remaining,
"units_active": units_active,
"building_integrity_percent": integrity_percent,
"summary_text": summary_text,
"state_snapshot": {
"tick": state.get("tick", 0),
"status": state.get("status", ""),
"building_integrity": building_integrity,
"max_units": state.get("max_units", 0),
},
"cycle_summaries": list(self._cycle_summaries),
"chart_points": chart_points,
"threat_history": list(self._threat_history),
"action_history": list(self._action_history),
}
player_actions_context = self._build_player_action_context()
context.update(transcripts)
context["player_actions_context"] = player_actions_context
context["player_actions_md"] = player_actions_context.get("markdown", "")
return context
def _launch_after_action_report(self, context: dict):
"""Run after-action report generation in the background."""
def _runner():
try:
report = self.advisor.generate_after_action_report(context)
except Exception as exc:
with self._lock:
self._result_report = None
self._result_report_status = "error"
self._result_report_error = str(exc)
self._last_result_payload_signature = ""
return
with self._lock:
if report and not report.error:
self._result_report = report
self._result_report_status = "ready"
self._result_report_error = ""
else:
self._result_report = report
self._result_report_status = "error"
self._result_report_error = (report.error if report else "Unknown error")
self._last_result_payload_signature = ""
threading.Thread(target=_runner, daemon=True).start()
def get_recommendations(self) -> Optional[dict]:
"""Get latest advisor recommendations."""
with self._lock:
if self._latest_recommendations:
return self._latest_recommendations.to_dict()
return None
def get_logs(self, limit: int = 50) -> list[dict]:
"""Get recent log entries."""
with self._lock:
return [log.to_dict() for log in self._logs[-limit:]]
def get_logs_text(self, limit: int = 20) -> str:
"""Get all logs as formatted text for display."""
with self._lock:
lines = []
for log in self._logs[-limit:]:
if log.event_type == "advisor":
lines.append(f"[Tick {log.tick}] πŸ€– AI: {log.message}")
if log.details and log.details.get("recommendations"):
for rec in log.details["recommendations"]:
target = rec.get("target", {})
lines.append(
f" β†’ {rec.get('suggested_unit_type')} at "
f"({target.get('x')}, {target.get('y')}): {rec.get('reason', '')[:50]}"
)
elif log.event_type == "deploy":
lines.append(f"[Tick {log.tick}] πŸš’ Deploy: {log.message}")
elif log.event_type == "status":
lines.append(f"[{log.timestamp}] ℹ️ {log.message}")
elif log.event_type == "error":
lines.append(f"[{log.timestamp}] ⚠️ Error: {log.message}")
else:
lines.append(f"[Tick {log.tick}] {log.message}")
return "\n".join(lines)
def get_mcp_log_text(self, limit: int = 20) -> str:
"""Expose MCP call history."""
with self._lock:
return self._get_mcp_log_text_locked(limit)
def get_advisor_text(self, limit: int = 5) -> str:
"""Get AI advisor display with rich reasoning (legacy text format)."""
messages = self.get_advisor_messages(limit)
if not messages:
return "πŸ€– AI Advisor standing by..."
return messages[-1].get("content", "") if messages else ""
def _wrap_analysis_block(
self,
content: str,
default_summary: str = "AI Analysis",
*,
split_stage_sections: bool = False,
open_by_default: bool = False,
) -> str:
"""Wrap advisor markdown in a collapsible details block."""
if not content:
return content
lines = content.splitlines()
summary = default_summary
first_value_line = ""
auto_summary = default_summary == "AI Analysis"
for line in lines:
stripped = line.strip()
if not stripped:
continue
if not first_value_line:
first_value_line = stripped
if auto_summary and stripped.lower().startswith("###"):
summary = stripped.lstrip("# ").strip()
break
summary = html.escape(summary or default_summary)
if auto_summary and first_value_line and first_value_line.lower().startswith("###"):
body_lines = lines[1:]
else:
body_lines = lines
body = "\n".join(body_lines).strip()
if split_stage_sections:
rendered = self._render_stage_sections(body, open_by_default)
if rendered:
body = rendered
open_attr = " open" if open_by_default else ""
return (
f"<details class=\"analysis-entry\"{open_attr}>"
f"<summary>{summary}</summary>\n"
f"{body}\n"
"</details>"
)
def _render_stage_sections(self, body: str, force_open: bool = False) -> str | None:
"""Split a multi-stage markdown block into per-stage collapsible sections."""
lines = body.splitlines()
sections: list[tuple[str, list[str]]] = []
current_title: str | None = None
current_lines: list[str] = []
def _flush():
nonlocal current_title, current_lines
if current_title is None:
return
sections.append((current_title, list(current_lines)))
current_title = None
current_lines = []
for line in lines:
stripped = line.strip()
if stripped.startswith("### "):
_flush()
current_title = stripped.lstrip("# ").strip()
current_lines = []
continue
if current_title is None:
# Ignore content that appears before the first stage header
if not stripped:
continue
current_title = "Details"
current_lines.append(line)
_flush()
if not sections:
return None
rendered_sections: list[str] = []
for title, section_lines in sections:
section_body = "\n".join(section_lines).rstrip()
if section_body.endswith("---"):
section_body = section_body[:-3].rstrip()
section_body = section_body.strip() or "_No details available._"
open_attr = " open" if force_open else ""
rendered_sections.append(
f"<details class=\"analysis-stage\"{open_attr}>"
f"<summary>{html.escape(title)}</summary>\n"
f"{section_body}\n"
"</details>"
)
return "\n\n".join(rendered_sections)
def _build_advisor_messages_locked(self) -> list[dict]:
"""Assemble advisor messages. Caller must hold _lock."""
messages: list[dict] = []
# Show welcome message if no activity yet
if (
not self._current_cycle_messages
and not self._advisor_history
and not self._is_thinking
):
messages.append({
"role": "assistant",
"content": "πŸ‘‹ Hello! I'm your AI Tactical Advisor.\n\nStart the simulation and I'll analyze the fire situation, describe my reasoning, and recommend tactical deployments.\n\nWatch me think, plan, and execute!"
})
return messages
current_entry = self._build_current_cycle_entry_locked()
if current_entry:
messages.append(current_entry)
return messages
def _build_current_cycle_entry_locked(self) -> Optional[dict]:
"""Render the active cycle as a single ⏱️ Tick block (even while streaming)."""
cycle_sections: list[str] = []
stage_placeholders = {
1: ("πŸ“Š Stage 1 Β· Assessment", "Querying MCP tools and analyzing the situation..."),
2: ("🎯 Stage 2 · Planning", "Formulating tactical strategy..."),
3: ("⚑ Stage 3 · Execution", "Generating deployment commands via MCP..."),
4: ("🧭 Stage 4 · Summary", "Consolidating cycle insights..."),
}
current_stage_title: Optional[str] = None
for msg in self._current_cycle_messages:
content = msg.get("content", "")
if content:
cycle_sections.append(content)
# Add placeholder for the stage currently in progress
if self._is_thinking:
tick = self._thinking_start_tick
if tick is None and self.engine.world:
tick = self.engine.get_state().get("tick", 0)
title, desc = stage_placeholders.get(
self._current_stage,
("πŸ€– AI Thinking", "Processing...")
)
current_stage_title = title
cycle_sections.append(
f"### {title} `[Tick {tick if tick is not None else '?'}]`\n\n{desc}"
)
if not cycle_sections:
return None
tick_label = self._thinking_start_tick
if tick_label is None and self.engine.world:
tick_label = self.engine.get_state().get("tick", 0)
summary = f"⏱️ Tick {tick_label if tick_label is not None else '?'}"
if self._is_thinking and current_stage_title:
summary = f"{summary} · {current_stage_title} ⏳"
body = "\n\n".join(cycle_sections).strip()
open_by_default = tick_label == 0
return {
"role": "assistant",
"content": self._wrap_analysis_block(
body,
summary,
split_stage_sections=True,
open_by_default=open_by_default,
),
"metadata": {"title": summary, "status": "pending" if self._is_thinking else "done"},
}
def get_advisor_messages(self) -> list:
"""Get current AI advisor cycle messages (progressive stage display)."""
with self._lock:
return self._build_advisor_messages_locked()
def _build_history_messages_locked(self) -> list[dict]:
"""Aggregate advisor history into per-tick chatbot messages."""
if not self._advisor_history:
return []
history_messages: list[dict] = []
buffer: list[str] = []
tick_num = "?"
def flush_cycle():
nonlocal buffer, tick_num
cycle_text = "\n\n".join(buffer).strip()
if cycle_text:
history_messages.append({
"role": "assistant",
"content": self._wrap_analysis_block(
cycle_text,
f"⏱️ Tick {tick_num}",
split_stage_sections=True,
open_by_default=(str(tick_num).strip() == "0"),
),
"metadata": {"title": f"⏱️ Tick {tick_num}", "status": "done"},
})
buffer = []
tick_num = "?"
for msg in self._advisor_history:
content = msg.get("content", "")
if not content:
continue
buffer.append(content)
if tick_num == "?" and "[Tick " in content:
start = content.find("[Tick ") + 6
end = content.find("]", start)
if end > start:
tick_num = content[start:end]
lowered = content.lower()
if "stage 4" in lowered:
flush_cycle()
if buffer:
flush_cycle()
return history_messages if history_messages else [{
"role": "assistant",
"content": self._wrap_analysis_block("No previous analysis cycles yet...", "πŸ“œ History"),
"metadata": {"title": "πŸ“œ History", "status": "done"},
}]
def get_advisor_markdown(self) -> str:
"""Get the latest AI advisor cycle as formatted plain text."""
with self._lock:
return self._get_advisor_markdown_internal()
def get_advisor_history_chat_messages(self) -> list[dict]:
"""Get advisor history formatted for chatbot display."""
with self._lock:
return self._build_history_messages_locked()
# =========================================================================
# Change Tracking for UI Optimization (Dual Timer Architecture)
# =========================================================================
def get_game_changes(self) -> dict:
"""
Check game-critical components for changes (called by game_timer every 1s).
Returns a dict with:
- state: current simulation state
- grid_changed: bool - whether fire/unit positions changed
- status_changed: bool - whether status bar should update
"""
import hashlib
with self._lock:
if self.engine.world:
state = self._compose_state_locked()
else:
state = {
"status": "idle",
"after_action_report": self._get_after_action_report_payload_locked(),
}
result = {"state": state}
# Grid state - hash fires, units, buildings positions
grid_data = {
"fires": sorted([(f["x"], f["y"], round(f["intensity"], 2)) for f in state.get("fires", [])]),
"units": sorted([(u["x"], u["y"], u["type"]) for u in state.get("units", [])]),
"buildings": sorted([(b["x"], b["y"]) for b in state.get("buildings", [])])
}
current_grid_hash = hashlib.md5(json.dumps(grid_data, sort_keys=True).encode()).hexdigest()
result["grid_changed"] = current_grid_hash != self._last_grid_hash
if result["grid_changed"]:
self._last_grid_hash = current_grid_hash
# Status bar - only update when simulation is actively running
status = state.get("status", "idle")
is_running = self._running
result["status_changed"] = is_running and status == "running"
return result
def get_ui_changes(self) -> dict:
"""
Check UI panel components for changes (called by ui_timer every 2s).
Returns a dict with:
- state: current simulation state
- advisor_changed: bool - whether advisor messages changed
- advisor_messages: list[dict] | None - new content if changed
- history_changed: bool - whether history HTML changed
- advisor_history: str or None - new content if changed
- event_log_changed: bool - whether event log changed
- event_log: str or None - new content if changed
- buttons_changed: bool - whether button states changed
- button_states: tuple (start_enabled, pause_enabled)
- result_changed: bool - whether result popup changed
- result_state: str - current result state
"""
with self._lock:
if self.engine.world:
state = self._compose_state_locked()
else:
state = {
"status": "idle",
"after_action_report": self._get_after_action_report_payload_locked(),
}
result = {"state": state}
# 1. Advisor chat messages - only update when AI is thinking or content changed
advisor_messages = self._get_advisor_chat_messages_internal()
signature = tuple(msg.get("content", "") for msg in advisor_messages)
content_changed = signature != self._last_advisor_signature
result["advisor_changed"] = self._is_thinking or content_changed
result["advisor_messages"] = advisor_messages if result["advisor_changed"] else None
if content_changed:
self._last_advisor_signature = signature
# 2. Advisor history messages - only update when content actually changed
history_messages = self._build_history_messages_locked()
history_signature = tuple(msg.get("content", "") for msg in history_messages)
result["history_changed"] = history_signature != self._last_history_signature
result["advisor_history"] = history_messages if result["history_changed"] else None
if result["history_changed"]:
self._last_history_signature = history_signature
# 3. Event log
event_log = self._get_event_log_internal()
result["event_log_changed"] = event_log != self._last_event_log
result["event_log"] = event_log if result["event_log_changed"] else None
if result["event_log_changed"]:
self._last_event_log = event_log
# 3b. MCP tool log
if self._mcp_log_dirty:
mcp_log = self._get_mcp_log_text_locked()
result["mcp_log_changed"] = True
result["mcp_log"] = mcp_log
self._last_mcp_log = mcp_log
self._mcp_log_dirty = False
else:
result["mcp_log_changed"] = False
result["mcp_log"] = None
# 4. Button states
status = state.get("status", "idle")
is_running = self._running
is_paused = (
self.engine.world is not None
and not self._running
and self.engine.world.status == SimulationStatus.RUNNING
)
start_enabled = is_paused or (not is_running and status in ["idle", "success", "fail"])
pause_enabled = is_running and status == "running"
current_buttons = (start_enabled, pause_enabled)
result["buttons_changed"] = current_buttons != self._last_button_states
result["button_states"] = current_buttons
if result["buttons_changed"]:
self._last_button_states = current_buttons
# 5. Result popup state
if self._result_dismissed:
current_result = ""
elif status in ["success", "fail"]:
current_result = status
else:
current_result = ""
result["result_changed"] = current_result != self._last_result_state
result["result_state"] = current_result
if result["result_changed"]:
self._last_result_state = current_result
report_payload = self._get_after_action_report_payload_locked()
overlay_payload = {
"outcome": current_result,
"after_action": report_payload,
}
payload_signature = json.dumps(overlay_payload, sort_keys=True)
if payload_signature != self._last_result_payload_signature:
result["result_changed"] = True
self._last_result_payload_signature = payload_signature
result["result_payload"] = overlay_payload
return result
def get_changed_components(self) -> dict:
"""
Legacy function - combines game and UI changes.
Used by button click handlers for full refresh.
"""
game = self.get_game_changes()
ui = self.get_ui_changes()
# Merge results
return {
"state": game["state"],
"grid_changed": game["grid_changed"],
"status_changed": game["status_changed"],
"advisor_changed": ui["advisor_changed"],
"advisor_messages": ui["advisor_messages"],
"history_changed": ui["history_changed"],
"advisor_history": ui["advisor_history"],
"event_log_changed": ui["event_log_changed"],
"event_log": ui["event_log"],
"mcp_log_changed": ui["mcp_log_changed"],
"mcp_log": ui["mcp_log"],
"buttons_changed": ui["buttons_changed"],
"button_states": ui["button_states"],
"result_changed": ui["result_changed"],
"result_state": ui["result_state"],
"result_payload": ui.get("result_payload"),
}
def _get_advisor_markdown_internal(self) -> str:
"""Internal helper to flatten advisor messages into text."""
messages = self._build_advisor_messages_locked()
parts = [msg.get("content", "") for msg in messages if msg.get("content")]
return "\n\n---\n\n".join(parts) if parts else "Waiting for analysis..."
def _get_advisor_chat_messages_internal(self) -> list[dict]:
"""Internal helper to normalize advisor messages for Chatbot display."""
messages = self._build_advisor_messages_locked()
chat_messages: list[dict] = []
for msg in messages:
role = msg.get("role", "assistant")
if role not in ("user", "assistant", "system"):
role = "assistant"
chat_msg = {
"role": role,
"content": msg.get("content", ""),
}
metadata = msg.get("metadata")
if metadata:
chat_msg["metadata"] = metadata
options = msg.get("options")
if options:
chat_msg["options"] = options
chat_messages.append(chat_msg)
return chat_messages
def get_advisor_chat_messages(self) -> list[dict]:
"""Public helper for UI components that expect message dictionaries."""
with self._lock:
return self._get_advisor_chat_messages_internal()
def _get_event_log_internal(self, limit: int = 15) -> str:
"""Internal method to get event log (must be called with lock held)."""
lines = []
event_logs = [log for log in self._logs if log.event_type != "advisor"]
for log in event_logs[-limit:]:
if log.event_type == "deploy":
lines.append(f"[Tick {log.tick}] πŸš’ {log.message}")
elif log.event_type == "status":
lines.append(f"[{log.timestamp}] ℹ️ {log.message}")
elif log.event_type == "error":
lines.append(f"[{log.timestamp}] ⚠️ {log.message}")
else:
lines.append(f"[Tick {log.tick}] {log.message}")
return "\n".join(lines) if lines else "No events yet..."
def get_event_log_text(self, limit: int = 15) -> str:
"""Get event logs (deploy, status, error) without AI advisor."""
with self._lock:
lines = []
event_logs = [log for log in self._logs if log.event_type != "advisor"]
for log in event_logs[-limit:]:
if log.event_type == "deploy":
lines.append(f"[Tick {log.tick}] πŸš’ {log.message}")
elif log.event_type == "status":
lines.append(f"[{log.timestamp}] ℹ️ {log.message}")
elif log.event_type == "error":
lines.append(f"[{log.timestamp}] ⚠️ {log.message}")
else:
lines.append(f"[Tick {log.tick}] {log.message}")
return "\n".join(lines) if lines else "No events yet..."
def get_deploy_log_text(self, limit: int = 10) -> str:
"""Get deploy-related logs only (deploy success and errors)."""
with self._lock:
lines = []
deploy_logs = [log for log in self._logs if log.event_type in ["deploy", "error"]]
for log in deploy_logs[-limit:]:
if log.event_type == "deploy":
lines.append(f"[Tick {log.tick}] βœ… {log.message}")
elif log.event_type == "error":
lines.append(f"[Tick {log.tick}] ❌ {log.message}")
return "\n".join(lines) if lines else "Click on a cell to deploy units..."
def deploy_unit(self, unit_type: str, x: int, y: int, source: str = "player") -> dict:
"""Deploy a unit (thread-safe)."""
with self._lock:
result = self._call_mcp_tool("deploy_unit", unit_type=unit_type, x=x, y=y, source=source)
if result.get("status") == "ok":
self._add_log(
"deploy",
f"Deployed {unit_type} at ({x}, {y})",
{"unit": result.get("unit"), "source": source}
)
if str(source or "").startswith("player"):
unit_label = "fire truck" if unit_type == "fire_truck" else "helicopter"
self._record_player_action(
"deploy_unit",
f"Deployed {unit_label} at ({x}, {y})",
{"unit_type": unit_type, "x": x, "y": y}
)
else:
self._add_log(
"error",
f"Failed to deploy {unit_type}: {result.get('message')}"
)
return result
def remove_unit(self, x: int, y: int) -> dict:
"""Remove a unit at position (thread-safe)."""
with self._lock:
result = self._call_mcp_tool("remove_unit", x=x, y=y)
if result.get("status") == "ok":
self._add_log(
"deploy",
f"Removed unit at ({x}, {y})",
{"unit": result.get("unit")}
)
removed_unit = result.get("unit") or {
"type": result.get("removed_unit_type"),
**(result.get("position") or {"x": x, "y": y}),
}
unit_type = removed_unit.get("type") or result.get("removed_unit_type", "")
unit_label = (
"fire truck"
if unit_type == "fire_truck"
else "helicopter"
if unit_type == "helicopter"
else "unit"
)
self._record_player_action(
"remove_unit",
f"Removed {unit_label} at ({removed_unit.get('x', x)}, {removed_unit.get('y', y)})",
{"unit": removed_unit}
)
return result
def add_fire(self, x: int, y: int, intensity: float = 0.5) -> dict:
"""Add fire at position (thread-safe). For testing purposes."""
with self._lock:
if self.engine.world is None:
return {"status": "error", "message": "World not initialized"}
# Check bounds
if not (0 <= x < self.engine.world.width and 0 <= y < self.engine.world.height):
return {"status": "error", "message": f"Position ({x}, {y}) out of bounds"}
cell = self.engine.world.grid[y][x]
# Only allow fire on forest or building
if cell.cell_type not in (CellType.FOREST, CellType.BUILDING):
return {"status": "error", "message": "Fire can only be placed on forest or building"}
# Cannot place fire on existing fire or smoke
if cell.fire_intensity > 0:
return {"status": "error", "message": "Cannot place fire on existing fire or smoke"}
# Check if there's already a unit at this position
for unit in self.engine.world.units:
if unit.x == x and unit.y == y:
return {"status": "error", "message": "Cannot place fire where a unit exists"}
# Set fire intensity
old_intensity = cell.fire_intensity
cell.fire_intensity = min(1.0, max(0.0, intensity))
# Update world metrics
self.engine.world.calculate_metrics()
self._add_log(
"fire",
f"πŸ”₯ Added fire at ({x}, {y}) with intensity {int(intensity * 100)}%",
{"x": x, "y": y, "intensity": cell.fire_intensity, "old_intensity": old_intensity}
)
result = {"status": "ok", "x": x, "y": y, "intensity": cell.fire_intensity}
self._record_player_action(
"add_fire",
f"Ignited fire at ({x}, {y}) Β· intensity {int(cell.fire_intensity * 100)}%",
result
)
return result
def has_unit_at(self, x: int, y: int) -> bool:
"""Check if there's a unit at position."""
with self._lock:
if self.engine.world is None:
return False
for unit in self.engine.world.units:
if unit.x == x and unit.y == y:
return True
return False
def is_running(self) -> bool:
"""Check if simulation is running."""
return self._running
def set_auto_execute(self, enabled: bool):
"""Set whether to automatically execute AI recommendations."""
with self._lock:
self._auto_execute = enabled
def is_auto_execute(self) -> bool:
"""Check if auto-execute is enabled."""
return self._auto_execute
def get_advisor_model_choice(self) -> str:
"""Return the currently selected advisor model label."""
with self._lock:
return self._model_choice
def set_advisor_model_choice(self, choice: str) -> dict:
"""
Switch the advisor backend/model based on UI selection.
Returns status dict usable by the UI for feedback.
"""
preset = ADVISOR_MODEL_CHOICES.get(choice)
if not preset:
return {"status": "error", "message": "Unknown model selection."}
if preset["provider"] == "openai" and not os.getenv("OPENAI_API_KEY"):
return {
"status": "error",
"message": "Please set OPENAI_API_KEY before selecting an OpenAI model.",
}
with self._lock:
self.advisor = AdvisorAgent(
provider=preset["provider"],
model=preset["model"],
)
self._model_choice = choice
self._add_log("status", f"Advisor model switched to {choice}")
return {"status": "ok", "selection": choice}
def reset_advisor_model_choice(self) -> str:
"""Reset advisor selection back to the default preset."""
default_choice = DEFAULT_ADVISOR_MODEL_CHOICE
preset = ADVISOR_MODEL_CHOICES[default_choice]
with self._lock:
self.advisor = AdvisorAgent(
provider=preset["provider"],
model=preset["model"],
)
self._model_choice = default_choice
self._advisor_first_run = True
self._add_log("status", f"Advisor model reset to {default_choice}")
return default_choice
def is_thinking(self) -> bool:
"""Check if AI advisor is currently thinking."""
return self._is_thinking
def get_thinking_stage(self) -> int:
"""Get current AI thinking stage (0=idle, 1=tool_call, 2=assess, 3=plan, 4=execute)."""
return self._current_stage if self._is_thinking else 0
def _simulation_loop(self):
"""Background simulation loop."""
# Use instance variables to preserve state across pause/resume
after_action_context = None
while self._running:
sim_should_stop = False
try:
with self._lock:
if self.engine.world is None:
break
# Run advisor immediately on first tick (only once per simulation)
if self._advisor_first_run:
self._advisor_first_run = False
self._run_advisor(self._get_mcp_world_state())
# Advance simulation
self.engine.step()
self._tick_count += 1
# Check end conditions
state = self.engine.get_state()
self._record_tick_metrics_locked(state)
status = state.get("status", "running")
if status in ["success", "fail"]:
self._add_log(
"status",
"πŸŽ‰ SUCCESS! Fire contained!" if status == "success" else "πŸ’₯ FAILED! Too much damage!"
)
after_action_context = self._prepare_after_action_context_locked(status, state)
self._running = False
sim_should_stop = True
else:
# Periodic advisor evaluation (every advisor_interval ticks)
if self._tick_count % self.advisor_interval == 0:
self._run_advisor(self._get_mcp_world_state())
# Notify UI
if self._on_update:
try:
self._on_update()
except Exception:
pass # Ignore UI callback errors
if after_action_context:
self._launch_after_action_report(after_action_context)
after_action_context = None
if sim_should_stop:
break
# Sleep between ticks
time.sleep(self.tick_interval)
except Exception as e:
with self._lock:
self._add_log("error", f"Simulation error: {str(e)}")
break
def _archive_current_cycle_locked(self):
"""Move the completed cycle messages into history (caller must hold _lock)."""
if not self._current_cycle_messages:
return
self._advisor_history.extend(self._current_cycle_messages)
if len(self._advisor_history) > 42:
self._advisor_history = self._advisor_history[-39:]
self._current_cycle_messages = []
def _run_advisor(self, state: dict):
"""
Run advisor analysis with progressive stage display.
Each stage is shown one at a time: Assessment β†’ Planning β†’ Execution β†’ Summary.
"""
# Prevent concurrent advisor calls
if self._advisor_running:
return
self._advisor_running = True
tick = state.get("tick", 0)
try:
# ================================================================
# Start new cycle - archive previous and clear current
# ================================================================
# Archive previous cycle to history (if exists)
self._archive_current_cycle_locked()
# Clear current cycle for new analysis
self._current_cycle_messages = []
self._thinking_start_tick = tick
# ================================================================
# Stage 1: ASSESS - Query MCP tools and analyze situation
# ================================================================
self._current_stage = 1
self._is_thinking = True
self._lock.release()
try:
assessment = self.advisor.assess(state)
finally:
self._lock.acquire()
# Add assessment message with integrated MCP tool calls
self._add_assessment_message(assessment, state, tick)
self._is_thinking = False
# ================================================================
# Stage 2: PLAN - Formulate tactical strategy
# ================================================================
self._current_stage = 2
self._is_thinking = True
self._lock.release()
try:
plan = self.advisor.plan(state, assessment)
finally:
self._lock.acquire()
self._add_planning_message(plan, tick)
self._is_thinking = False
# ================================================================
# Stage 3: EXECUTE - Generate and execute deployment commands
# ================================================================
self._current_stage = 3
self._is_thinking = True
self._lock.release()
try:
recommendations = self.advisor.execute(state, assessment, plan)
finally:
self._lock.acquire()
# Add execution message with integrated MCP tool calls
self._add_execution_message(recommendations, tick)
# Build final response object (needed for summary + logging)
response = self._build_advisor_response(assessment, plan, recommendations)
self._latest_recommendations = response
# ================================================================
# Stage 4: SUMMARY - Consolidate cycle outcomes
# ================================================================
self._current_stage = 4
self._is_thinking = True
self._lock.release()
try:
cycle_summary = self.advisor.summarize(state, assessment, plan, recommendations, response)
finally:
self._lock.acquire()
self._is_thinking = False
self._add_summary_cycle_message(cycle_summary, tick)
self._record_cycle_summary(tick, cycle_summary, self.engine.get_state())
# ================================================================
# Complete - all stages done
# ================================================================
self._current_stage = 5
self._add_log(
"advisor",
response.summary,
{
"recommendations": [r.to_dict() for r in response.recommendations],
"thinking": response.thinking,
"analysis": response.analysis,
"priority": response.priority,
"error": response.error
}
)
# Auto-execute recommendations if enabled
if self._auto_execute and response.recommendations:
self._execute_recommendations(response, tick)
except Exception as e:
self._is_thinking = False
self._current_stage = 0
self._add_log("error", f"Advisor error: {str(e)}")
# Add error message to current cycle
self._current_cycle_messages.append({
"role": "assistant",
"content": f"❌ AI Advisor Error: {str(e)}"
})
finally:
self._advisor_running = False
# Ensure completed cycle is archived so UI can fold under ⏱️ Tick blocks immediately
self._archive_current_cycle_locked()
def _add_assessment_message(self, assessment: AssessmentResult, state: dict, tick: int):
"""Add the Assessment message (Stage 1) with MCP tool calls to current cycle."""
fires = state.get("fires", [])
units = state.get("units", [])
buildings = state.get("buildings", [])
building_integrity = state.get("building_integrity", 1.0)
status = state.get("status", "running")
width = state.get("width", 10)
height = state.get("height", 10)
# Generate emoji map
emoji_map = generate_emoji_map(self.engine)
priority_emoji = {
"CRITICAL": "πŸ”΄",
"HIGH": "🟠",
"MODERATE": "🟑",
"LOW": "🟒"
}
emoji = priority_emoji.get(assessment.threat_level, "βšͺ")
content = f"""
### πŸ“Š Stage 1 Β· Assessment `[Tick {tick}]`
#### πŸ”§ MCP Tool Calls
<details>
<summary>πŸ“€ <code>mcp.get_world_state()</code></summary>
```python
result = mcp.get_world_state()
```
**Response**
```
status: {status} | grid: {width}x{height}
fires: {len(fires)} | units: {len(units)}/{state.get('max_units', 10)}
buildings: {len(buildings)} | integrity: {building_integrity:.0%}
```
```
{emoji_map}
```
_Legend: 🌲 Forest Β· 🏒 Building Β· πŸ”₯ Fire Β· πŸ’¨ Smoke Β· πŸš’ Truck Β· 🚁 Heli_
</details>
""".strip()
if assessment.ineffective_units:
idle_lines = []
for u in assessment.ineffective_units[:5]:
idle_lines.append(f"- {u.get('type', 'unit')} at ({u.get('x', 0)}, {u.get('y', 0)})")
if len(assessment.ineffective_units) > 5:
idle_lines.append(f"- ... and {len(assessment.ineffective_units) - 5} more")
idle_block = "\n".join(idle_lines)
content += f"""
<details>
<summary>πŸ“€ <code>mcp.find_idle_units()</code> β†’ ⚠️ {len(assessment.ineffective_units)} idle</summary>
```python
{idle_block}
```
</details>
"""
else:
content += """
<details>
<summary>πŸ“€ <code>mcp.find_idle_units()</code> β†’ βœ… All effective</summary>
```python
# Every deployed unit is actively covering a fire
```
</details>
"""
if assessment.uncovered_fires:
fire_lines = []
for f in assessment.uncovered_fires[:5]:
fire_lines.append(f"- Fire at ({f.get('x', 0)}, {f.get('y', 0)}) Β· intensity={f.get('intensity', 0):.0%}")
if len(assessment.uncovered_fires) > 5:
fire_lines.append(f"- ... and {len(assessment.uncovered_fires) - 5} more")
fire_block = "\n".join(fire_lines)
content += f"""
<details>
<summary>πŸ“€ <code>mcp.find_uncovered_fires()</code> β†’ 🚨 {len(assessment.uncovered_fires)} uncovered</summary>
```python
{fire_block}
```
</details>
"""
else:
content += """
<details>
<summary>πŸ“€ <code>mcp.find_uncovered_fires()</code> β†’ βœ… All covered</summary>
```python
# All active fires currently have unit coverage
```
</details>
"""
content += f"""
#### πŸ“‹ Analysis Results
**Threat Level:** {emoji} {assessment.threat_level}
**Fire Analysis**
- Total fires: {assessment.fire_count}
- High intensity (>70%): {len(assessment.high_intensity_fires)}
- Building threats: {len(assessment.building_threats)}
- ⚠️ Uncovered fires: {len(assessment.uncovered_fires)}
**Unit Analysis**
- Deployed: {assessment.unit_count}/{assessment.max_units}
- Effective: {len(assessment.effective_units)}
- Idle: {len(assessment.ineffective_units)}
- Coverage ratio: {assessment.coverage_ratio:.0%}
**Summary:** {assessment.summary}
"""
content += "\n\n---\n"
self._current_cycle_messages.append({"role": "assistant", "content": content})
def _add_planning_message(self, plan, tick: int):
"""Add the Planning message (Stage 2) to current cycle."""
strategy_emoji = {
"deploy_new": "πŸš€",
"optimize_existing": "πŸ”„",
"balanced": "βš–οΈ",
"monitor": "πŸ‘€"
}
s_emoji = strategy_emoji.get(plan.strategy, "πŸ“‹")
action_lines = []
if plan.deploy_count > 0:
action_lines.append(f"- Deploy: {plan.deploy_count} new unit(s)")
if plan.reposition_units:
action_lines.append(f"- Reposition: {len(plan.reposition_units)} idle unit(s)")
if plan.priority_targets:
action_lines.append(f"- Priority fires: {len(plan.priority_targets)}")
content = f"""
### 🎯 Stage 2 · Planning `[Tick {tick}]`
**Strategy:** {s_emoji} `{plan.strategy.upper()}`
**Reasoning**
{plan.reasoning}
""".strip()
if action_lines:
content += "\n\n**Action Outline**\n" + "\n".join(action_lines)
content += "\n\n---\n"
self._current_cycle_messages.append({"role": "assistant", "content": content})
def _add_execution_message(self, recommendations, tick: int):
"""Add the Execution message (Stage 3) with MCP tool calls to current cycle."""
if not recommendations:
content = f"### ⚑ Stage 3 Β· Execution `[Tick {tick}]`\n\nβœ… **No actions required.** Current deployments already cover every fire."
content += "\n\n---\n"
self._current_cycle_messages.append({"role": "assistant", "content": content})
self._record_action_breakdown(tick, 0, 0, 0)
return
move_count = sum(1 for r in recommendations if getattr(r, "action", "deploy") == "move")
replace_count = sum(1 for r in recommendations if getattr(r, "action", "deploy") == "replace")
deploy_count = len(recommendations) - move_count - replace_count
summary = []
if move_count:
summary.append(f"- πŸ”„ Reposition {move_count} idle unit(s)")
if replace_count:
summary.append(f"- πŸ” Replace {replace_count} unit(s)")
if deploy_count:
summary.append(f"- πŸš€ Deploy {deploy_count} additional unit(s)")
content = f"### ⚑ Stage 3 Β· Execution `[Tick {tick}]`\n\n" + "\n".join(summary) + "\n\n#### πŸ”§ MCP Tool Actions\n"
for idx, rec in enumerate(recommendations, 1):
unit_emoji = "πŸš’" if rec.suggested_unit_type == "fire_truck" else "🚁"
unit_name = "Fire Truck" if rec.suggested_unit_type == "fire_truck" else "Helicopter"
action = getattr(rec, "action", "deploy")
if action == "move":
source_x = getattr(rec, "source_x", 0)
source_y = getattr(rec, "source_y", 0)
block = f"""
<details>
<summary>{idx}. πŸ”„ Move {unit_name} from ({source_x}, {source_y}) β†’ ({rec.target_x}, {rec.target_y})</summary>
```python
mcp.move_unit(
source_x={source_x}, source_y={source_y},
target_x={rec.target_x}, target_y={rec.target_y}
)
```
πŸ’‘ _{rec.reason}_
</details>
"""
elif action == "replace":
old_type = getattr(rec, "old_unit_type", "fire_truck")
old_name = "Fire Truck" if old_type == "fire_truck" else "Helicopter"
old_emoji = "πŸš’" if old_type == "fire_truck" else "🚁"
block = f"""
<details>
<summary>{idx}. πŸ” Replace {old_name} {old_emoji} with {unit_name} {unit_emoji} at ({rec.target_x}, {rec.target_y})</summary>
```python
mcp.replace_unit(
x={rec.target_x}, y={rec.target_y},
new_unit_type="{rec.suggested_unit_type}"
)
```
πŸ’‘ _{rec.reason}_
</details>
"""
else:
block = f"""
<details>
<summary>{idx}. {unit_emoji} Deploy {unit_name} to ({rec.target_x}, {rec.target_y})</summary>
```python
mcp.deploy_unit(
unit_type="{rec.suggested_unit_type}",
x={rec.target_x}, y={rec.target_y}
)
```
πŸ’‘ _{rec.reason}_
</details>
"""
content += "\n" + block.strip() + "\n"
content += "\n\n---\n"
self._current_cycle_messages.append({"role": "assistant", "content": content})
self._record_action_breakdown(tick, deploy_count, move_count, replace_count)
def _add_summary_cycle_message(self, cycle_summary: CycleSummary, tick: int):
"""Add Stage 4 summary message to the current cycle."""
highlights = "\n".join(f"- {item}" for item in cycle_summary.key_highlights) or "- (none)"
risks = "\n".join(f"- {item}" for item in cycle_summary.risks) or "- (none)"
next_focus = "\n".join(f"- {item}" for item in cycle_summary.next_focus) or "- (none)"
content = f"""
### 🧭 Stage 4 · Summary `[Tick {tick}]`
**Headline:** {cycle_summary.headline}
**Threat Level:** {cycle_summary.threat_level}
**Key Highlights**
{highlights}
**Risks / Gaps**
{risks}
**Next Focus**
{next_focus}
""".strip()
content += "\n\n---\n"
self._current_cycle_messages.append({"role": "assistant", "content": content})
def _build_advisor_response(self, assessment: AssessmentResult, plan: PlanResult, recommendations: list) -> AdvisorResponse:
"""Build the final AdvisorResponse object."""
# Build thinking summary
thinking_parts = [
f"πŸ“Š Scanning {assessment.fire_count} active fires...",
]
if assessment.uncovered_fires:
thinking_parts.append(f"🚨 ALERT: {len(assessment.uncovered_fires)} fire(s) with NO coverage!")
if assessment.building_threats:
thinking_parts.append(f"🏒 {len(assessment.building_threats)} fire(s) threatening buildings!")
if assessment.ineffective_units:
thinking_parts.append(f"πŸ”„ {len(assessment.ineffective_units)} idle unit(s) should be repositioned")
thinking_parts.append(f"🎯 Strategy: {plan.strategy.upper()} - {plan.reasoning}")
# Generate summary
priority_emoji = {"CRITICAL": "πŸ”΄", "HIGH": "🟠", "MODERATE": "🟑", "LOW": "🟒"}
emoji = priority_emoji.get(assessment.threat_level, "βšͺ")
if assessment.threat_level == "CRITICAL":
summary = f"{emoji} CRITICAL: {assessment.summary}. Immediate action required!"
elif assessment.threat_level == "HIGH":
summary = f"{emoji} HIGH: {assessment.summary}. Rapid response needed."
elif assessment.threat_level == "MODERATE":
summary = f"{emoji} MODERATE: {assessment.summary}. Tactical deployment advised."
else:
summary = f"{emoji} LOW: {assessment.summary}. Monitoring situation."
return AdvisorResponse(
summary=summary,
recommendations=recommendations,
thinking="\n".join(thinking_parts),
analysis=f"{assessment.fire_count} fires | {assessment.unit_count}/{assessment.max_units} units | {assessment.building_integrity:.0%} building integrity",
priority=assessment.threat_level,
assessment=assessment,
plan=plan
)
def _execute_recommendations(self, response: AdvisorResponse, tick: int):
"""Execute AI recommendations (must be called with lock held)."""
executed_count = 0
for rec in response.recommendations:
action = getattr(rec, "action", "deploy")
rec_key = f"{tick}_{action}_{rec.suggested_unit_type}_{rec.target_x}_{rec.target_y}"
if rec_key in self._executed_recommendations:
continue
if action == "move":
source_x = getattr(rec, "source_x", -1)
source_y = getattr(rec, "source_y", -1)
if source_x < 0 or source_y < 0:
self._add_log("error", f"πŸ€– AI move failed: missing source ({source_x},{source_y})")
continue
result = self._call_mcp_tool(
"move_unit",
source_x=source_x,
source_y=source_y,
target_x=rec.target_x,
target_y=rec.target_y,
)
if result.get("status") == "ok":
executed_count += 1
unit_name = "Fire Truck" if rec.suggested_unit_type == "fire_truck" else "Helicopter"
self._add_log(
"deploy",
f"πŸ€– AI moved {unit_name}: ({source_x},{source_y}) β†’ ({rec.target_x},{rec.target_y})",
{"source": "ai", "reason": rec.reason, "action": "move"},
)
self._executed_recommendations.add(rec_key)
else:
self._add_log(
"error",
f"πŸ€– AI move failed: {result.get('message', 'unknown error')} "
f"(source=({source_x},{source_y}) target=({rec.target_x},{rec.target_y}))",
)
elif action == "remove":
result = self._call_mcp_tool("remove_unit", x=rec.target_x, y=rec.target_y)
if result.get("status") == "ok":
executed_count += 1
unit_name = "Fire Truck" if rec.suggested_unit_type == "fire_truck" else "Helicopter"
self._add_log(
"deploy",
f"πŸ€– AI removed {unit_name} at ({rec.target_x},{rec.target_y}) - ready to redeploy",
{"source": "ai", "reason": rec.reason, "action": "remove"},
)
self._executed_recommendations.add(rec_key)
else:
self._add_log(
"error",
f"πŸ€– AI remove failed: {result.get('message', 'unknown error')} at "
f"({rec.target_x},{rec.target_y})",
)
else:
result = self._call_mcp_tool(
"deploy_unit",
unit_type=rec.suggested_unit_type,
x=rec.target_x,
y=rec.target_y,
source="ai",
)
if result.get("status") == "ok":
executed_count += 1
unit_name = "Fire Truck" if rec.suggested_unit_type == "fire_truck" else "Helicopter"
self._add_log(
"deploy",
f"πŸ€– AI deployed {unit_name} at ({rec.target_x}, {rec.target_y})",
{"source": "ai", "reason": rec.reason, "action": "deploy"},
)
self._executed_recommendations.add(rec_key)
else:
self._add_log(
"error",
f"πŸ€– AI deploy failed: {result.get('message', 'unknown error')} "
f"at ({rec.target_x}, {rec.target_y})",
)
if len(self._executed_recommendations) > 100:
self._executed_recommendations = set(list(self._executed_recommendations)[-50:])
def _add_log(self, event_type: str, message: str, details: Optional[dict] = None):
"""Add a log entry (must be called with lock held)."""
tick = self.engine.world.tick if self.engine.world else 0
self._logs.append(LogEntry(
timestamp=datetime.now().strftime("%H:%M:%S"),
tick=tick,
event_type=event_type,
message=message,
details=details
))
# Keep logs bounded
if len(self._logs) > 200:
self._logs = self._logs[-100:]
# Global service instance for the app
_service: Optional[SimulationService] = None
def get_service() -> SimulationService:
"""Get or create the global simulation service."""
global _service
if _service is None:
_service = SimulationService()
return _service