File size: 15,940 Bytes
11e4a86
 
 
0550c3e
11e4a86
 
 
 
 
0550c3e
11e4a86
0550c3e
11e4a86
0550c3e
 
11e4a86
 
0550c3e
 
11e4a86
 
 
0550c3e
11e4a86
 
0550c3e
11e4a86
 
0550c3e
 
11e4a86
 
 
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
0550c3e
 
11e4a86
0550c3e
11e4a86
 
 
0550c3e
 
 
 
11e4a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0550c3e
11e4a86
0550c3e
 
 
 
 
 
 
 
 
 
 
11e4a86
0550c3e
11e4a86
 
0550c3e
11e4a86
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
 
 
0550c3e
 
11e4a86
 
 
 
 
 
 
0550c3e
11e4a86
 
 
 
0550c3e
 
 
 
 
 
 
 
 
 
 
 
11e4a86
 
 
0550c3e
 
11e4a86
0550c3e
11e4a86
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
0550c3e
 
 
11e4a86
0550c3e
11e4a86
 
 
 
 
 
0550c3e
11e4a86
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0550c3e
11e4a86
 
0550c3e
11e4a86
 
 
0550c3e
11e4a86
 
 
0550c3e
 
11e4a86
 
0550c3e
 
 
 
 
 
11e4a86
 
 
0550c3e
 
11e4a86
0550c3e
 
11e4a86
 
0550c3e
11e4a86
 
0550c3e
 
 
 
 
 
11e4a86
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
 
 
0550c3e
11e4a86
 
 
0550c3e
 
 
11e4a86
 
 
 
 
 
 
 
 
 
 
 
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
 
 
0550c3e
11e4a86
 
0550c3e
11e4a86
0550c3e
 
11e4a86
 
 
 
0550c3e
 
11e4a86
 
 
 
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
 
 
0550c3e
 
11e4a86
 
 
 
 
 
 
 
 
 
 
 
0550c3e
 
11e4a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0550c3e
 
 
 
 
 
 
 
11e4a86
 
 
 
 
 
0550c3e
 
11e4a86
 
0550c3e
 
 
11e4a86
 
0550c3e
11e4a86
 
 
 
 
 
 
 
 
 
 
 
0550c3e
11e4a86
 
 
 
 
 
 
 
 
 
 
 
 
0550c3e
11e4a86
 
 
0550c3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import io
import base64
import traceback
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
from flask import Flask, request, render_template, flash, redirect, url_for, jsonify
from dotenv import load_dotenv

# Use the auto classes to avoid version-specific direct imports
from transformers import (
    AutoModel,                # used for vision (Swin)
    AutoImageProcessor,       # optional: if you want processor instead of torchvision
    T5ForConditionalGeneration,
    T5Tokenizer,
    AutoModelForCausalLM,
    AutoTokenizer,
)
from transformers.modeling_outputs import BaseModelOutput

load_dotenv()  # Load environment variables from .env file

# --- Configuration ---
MODEL_PATH = '/cluster/home/ammaa/Downloads/Projects/CheXpert-Report-Generation/swin-t5-model.pth'
SWIN_MODEL_NAME = "microsoft/swin-base-patch4-window7-224"
T5_MODEL_NAME = "t5-base"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN")  # Hugging Face token (optional)

if not HF_TOKEN:
    print("Warning: HUGGING_FACE_HUB_TOKEN environment variable not set. Llama model download might fail.")

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}

# --- Swin-T5 Model Definition ---
class ImageCaptioningModel(nn.Module):
    def __init__(self,
                 swin_model_name=SWIN_MODEL_NAME,
                 t5_model_name=T5_MODEL_NAME):
        super().__init__()
        # Use AutoModel for the vision backbone (works across transformer versions)
        self.swin = AutoModel.from_pretrained(swin_model_name)
        self.t5 = T5ForConditionalGeneration.from_pretrained(t5_model_name)
        # Project swin hidden states to T5 d_model
        self.img_proj = nn.Linear(self.swin.config.hidden_size, self.t5.config.d_model)

    def forward(self, images, labels=None):
        # images: expected shape (batch, channels, height, width)
        swin_outputs = self.swin(images, return_dict=True)
        img_feats = swin_outputs.last_hidden_state  # (batch, seq_len, hidden)
        img_feats_proj = self.img_proj(img_feats)   # project to T5 d_model
        encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)
        if labels is not None:
            outputs = self.t5(encoder_outputs=encoder_outputs, labels=labels)
        else:
            outputs = self.t5(encoder_outputs=encoder_outputs)
        return outputs

# --- Global Variables for Model Components ---
swin_t5_model = None
swin_t5_tokenizer = None
transform = None
llama_model = None
llama_tokenizer = None

def load_swin_t5_model_components():
    """Loads the Swin-T5 model, tokenizer, and transformation pipeline."""
    global swin_t5_model, swin_t5_tokenizer, transform
    try:
        print(f"Loading Swin-T5 model components on device: {DEVICE}")
        # Initialize model structure
        swin_t5_model = ImageCaptioningModel(swin_model_name=SWIN_MODEL_NAME, t5_model_name=T5_MODEL_NAME)

        # Load state dictionary if provided
        if not os.path.exists(MODEL_PATH):
            raise FileNotFoundError(f"Swin-T5 Model file not found at {MODEL_PATH}.")

        # Load state dict into model (map_location ensures correct device)
        state = torch.load(MODEL_PATH, map_location=DEVICE)
        # If the saved state is a dict containing model key (common), attempt to pull it
        if isinstance(state, dict) and "model_state_dict" in state and len(state) > 1:
            # typical saved checkpoint structure { 'epoch':..., 'model_state_dict':..., ... }
            swin_t5_model.load_state_dict(state["model_state_dict"])
        else:
            swin_t5_model.load_state_dict(state)

        swin_t5_model.to(DEVICE)
        swin_t5_model.eval()
        print("Swin-T5 Model loaded successfully.")

        # Load tokenizer for T5
        swin_t5_tokenizer = T5Tokenizer.from_pretrained(T5_MODEL_NAME)
        print("Swin-T5 Tokenizer loaded successfully.")

        # Define (simple) image transformations
        transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])
        print("Transforms defined.")

    except Exception as e:
        print(f"Error loading Swin-T5 model components: {e}")
        print(traceback.format_exc())
        # Re-raise so startup knows loading failed (your code caught it)
        raise

def load_llama_model_components():
    """Loads the Llama model and tokenizer."""
    global llama_model, llama_tokenizer
    if not HF_TOKEN:
        print("Skipping Llama model load: Hugging Face token not found.")
        return

    try:
        print(f"Loading Llama model ({LLAMA_MODEL_NAME}) components...")

        # Choose an appropriate dtype for loading
        if torch.cuda.is_available():
            # prefer bf16 if supported to save memory on modern GPUs
            try:
                torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
            except Exception:
                torch_dtype = torch.float16
        else:
            torch_dtype = torch.float32

        # Use use_auth_token parameter for private models / gated access
        llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_auth_token=HF_TOKEN)
        llama_model = AutoModelForCausalLM.from_pretrained(
            LLAMA_MODEL_NAME,
            torch_dtype=torch_dtype,
            device_map="auto",
            use_auth_token=HF_TOKEN
        )
        llama_model.eval()
        print("Llama Model and Tokenizer loaded successfully.")
    except Exception as e:
        print(f"Error loading Llama model components: {e}")
        print(traceback.format_exc())
        llama_model = None
        llama_tokenizer = None
        print("WARNING: Chatbot functionality will be disabled due to loading error.")

# --- Inference Function (Swin-T5) ---
def generate_report(image_bytes, selected_vlm, max_length=100):
    """Generates a report/caption for the given image bytes using Swin-T5."""
    global swin_t5_model, swin_t5_tokenizer, transform
    # Ensure components are loaded (attempt to load if missing)
    if swin_t5_model is None or swin_t5_tokenizer is None or transform is None:
        load_swin_t5_model_components()
        if swin_t5_model is None or swin_t5_tokenizer is None or transform is None:
            raise RuntimeError("Swin-T5 model components failed to load.")

    if selected_vlm != "swin_t5_chexpert":
        return "Error: Selected VLM is not supported."

    try:
        image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        input_image = transform(image).unsqueeze(0).to(DEVICE)

        # Perform inference
        with torch.no_grad():
            swin_outputs = swin_t5_model.swin(input_image, return_dict=True)
            img_feats = swin_outputs.last_hidden_state
            img_feats_proj = swin_t5_model.img_proj(img_feats)
            encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)

            generated_ids = swin_t5_model.t5.generate(
                encoder_outputs=encoder_outputs,
                max_length=max_length,
                num_beams=4,
                early_stopping=True
            )
            report = swin_t5_tokenizer.decode(generated_ids[0], skip_special_tokens=True)
            return report

    except Exception as e:
        print(f"Error during Swin-T5 report generation: {e}")
        print(traceback.format_exc())
        return f"Error generating report: {e}"

# --- Chat Function (Llama) ---
def generate_chat_response(question, report_context, max_new_tokens=250):
    """Generates a chat response using Llama based on the report context."""
    global llama_model, llama_tokenizer
    if llama_model is None or llama_tokenizer is None:
        return "Chatbot is currently unavailable."

    system_prompt = "You are a helpful medical assistant. I'm a medical student, your task is to help me understand the following report."
    prompt = (f"{system_prompt}\n\nBased on the following report:\n\n---\n{report_context}\n---\n\n"
              f"Please answer this question: {question}\n")

    try:
        # Tokenize and move to model device
        inputs = llama_tokenizer(prompt, return_tensors="pt", truncation=True)
        input_ids = inputs["input_ids"].to(next(llama_model.parameters()).device)
        attention_mask = inputs.get("attention_mask", None)
        if attention_mask is not None:
            attention_mask = attention_mask.to(input_ids.device)

        with torch.no_grad():
            outputs = llama_model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                eos_token_id=llama_tokenizer.eos_token_id,
                do_sample=True,
                temperature=0.6,
                top_p=0.9,
                pad_token_id=llama_tokenizer.eos_token_id
            )

        # Returned outputs: (batch, seq_len). We want the newly generated part after the prompt.
        generated = outputs[0]
        # Remove input prompt tokens to keep only the response
        response_ids = generated[input_ids.shape[-1]:]
        response_text = llama_tokenizer.decode(response_ids, skip_special_tokens=True).strip()
        return response_text

    except Exception as e:
        print(f"Error during Llama chat generation: {e}")
        print(traceback.format_exc())
        return f"Error generating chat response: {e}"

# --- Flask Application Setup ---
app = Flask(__name__)
app.secret_key = os.urandom(24)

# Load models when the application starts
print("Loading models on application startup...")
try:
    load_swin_t5_model_components()
    load_llama_model_components()
    print("Model loading complete.")
except Exception as e:
    print(f"FATAL ERROR during model loading: {e}")
    print(traceback.format_exc())
    # Continue with limited functionality (report generation may fail if swin-t5 didn't load)
    # Optionally: exit(1)

def allowed_file(filename):
    return '.' in filename and \
           filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def parse_patient_info(filename):
    """
    Parses a filename like '00069-34-Frontal-AP-63.0-Male-White.png'
    Returns a dictionary with 'view', 'age', 'gender', 'ethnicity'.
    Returns None if parsing fails.
    """
    try:
        base_name = os.path.splitext(filename)[0]
        parts = base_name.split('-')
        if len(parts) < 5:
            print(f"Warning: Filename '{filename}' has fewer parts than expected.")
            return None

        ethnicity = parts[-1]
        gender = parts[-2]
        age_str = parts[-3]
        try:
            age = int(float(age_str))
        except ValueError:
            print(f"Warning: Could not parse age '{age_str}' from filename '{filename}'.")
            return None

        view_parts = parts[2:-3]
        view = '-'.join(view_parts) if view_parts else "Unknown"

        if gender.lower() not in ['male', 'female', 'other', 'unknown']:
            print(f"Warning: Unusual gender '{gender}' found in filename '{filename}'.")

        return {
            'view': view,
            'age': age,
            'gender': gender.capitalize(),
            'ethnicity': ethnicity.capitalize()
        }
    except IndexError:
        print(f"Error parsing filename '{filename}': Index out of bounds.")
        return None
    except Exception as e:
        print(f"Error parsing filename '{filename}': {e}")
        print(traceback.format_exc())
        return None

# --- Routes ---
@app.route('/', methods=['GET'])
def index():
    chatbot_available = bool(llama_model and llama_tokenizer)
    return render_template('index.html', chatbot_available=chatbot_available)

@app.route('/predict', methods=['POST'])
def predict():
    chatbot_available = bool(llama_model and llama_tokenizer)
    patient_info = None

    if 'image' not in request.files:
        flash('No image file part in the request.', 'danger')
        return redirect(url_for('index'))

    file = request.files['image']
    vlm_choice = request.form.get('vlm_choice', 'swin_t5_chexpert')
    try:
        max_length = int(request.form.get('max_length', 100))
        if not (10 <= max_length <= 512):
            raise ValueError("Max length must be between 10 and 512.")
    except ValueError as e:
        flash(f'Invalid Max Length value: {e}', 'danger')
        return redirect(url_for('index'))

    if file.filename == '':
        flash('No image selected for uploading.', 'warning')
        return redirect(url_for('index'))

    if file and allowed_file(file.filename):
        try:
            image_bytes = file.read()

            original_filename = file.filename
            patient_info = parse_patient_info(original_filename)
            if patient_info:
                print(f"Parsed Patient Info: {patient_info}")
            else:
                print(f"Could not parse patient info from filename: {original_filename}")

            report = generate_report(image_bytes, vlm_choice, max_length)

            if isinstance(report, str) and report.startswith("Error"):
                flash(f'Report Generation Failed: {report}', 'danger')
                image_data = base64.b64encode(image_bytes).decode('utf-8')
                return render_template('index.html',
                                       report=None,
                                       image_data=image_data,
                                       patient_info=patient_info,
                                       chatbot_available=chatbot_available)

            image_data = base64.b64encode(image_bytes).decode('utf-8')

            return render_template('index.html',
                                   report=report,
                                   image_data=image_data,
                                   patient_info=patient_info,
                                   chatbot_available=chatbot_available)

        except FileNotFoundError as fnf_error:
            flash(f'Model file not found: {fnf_error}. Please check server configuration.', 'danger')
            print(f"Model file error: {fnf_error}\n{traceback.format_exc()}")
            return redirect(url_for('index'))
        except RuntimeError as rt_error:
            flash(f'Model loading error: {rt_error}. Please check server logs.', 'danger')
            print(f"Runtime error during prediction: {rt_error}\n{traceback.format_exc()}")
            return redirect(url_for('index'))
        except Exception as e:
            flash(f'An unexpected error occurred during prediction: {e}', 'danger')
            print(f"Error during prediction: {e}\n{traceback.format_exc()}")
            return redirect(url_for('index'))
    else:
        flash('Invalid image file type. Allowed types: png, jpg, jpeg.', 'danger')
        return redirect(url_for('index'))

@app.route('/chat', methods=['POST'])
def chat():
    if not llama_model or not llama_tokenizer:
        return jsonify({"answer": "Chatbot is not available."}), 503

    data = request.get_json()
    if not data or 'question' not in data or 'report_context' not in data:
        return jsonify({"error": "Missing question or report context"}), 400

    question = data['question']
    report_context = data['report_context']

    try:
        answer = generate_chat_response(question, report_context)
        return jsonify({"answer": answer})
    except Exception as e:
        print(f"Error in /chat endpoint: {e}")
        print(traceback.format_exc())
        return jsonify({"error": "Failed to generate chat response"}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000, debug=False)