File size: 23,053 Bytes
e495386 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
from flask import Flask, request, render_template, session, url_for, redirect, jsonify
from flask_session import Session
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
import os
import logging
import re
import traceback
import base64
import shutil
import zipfile
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
from PIL import Image
# --- Core Application Imports ---
# Make sure you have an empty __init__.py file in your 'src' folder
from api import api_bp
from src.medical_swarm import run_medical_swarm
from src.utils import load_rag_system, standardize_query, get_standalone_question, parse_agent_response, markdown_bold_to_html
from langchain_google_genai import ChatGoogleGenerativeAI
# Setup logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# --- 1. DATABASE SETUP FUNCTION (For Deployment) ---
def setup_database():
"""Downloads and unzips the ChromaDB folder from Hugging Face Datasets."""
# --- !!! IMPORTANT !!! ---
# YOU MUST CHANGE THIS to your Hugging Face Dataset repo ID
# For example: "your_username/your_database_repo_name"
DATASET_REPO_ID = "WanIrfan/atlast-db"
# -------------------------
ZIP_FILENAME = "chroma_db.zip"
DB_DIR = "chroma_db"
if os.path.exists(DB_DIR) and os.listdir(DB_DIR):
logger.info("β
Database directory already exists. Skipping download.")
return
logger.info(f"π₯ Downloading database from HF Hub: {DATASET_REPO_ID}")
try:
zip_path = hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=ZIP_FILENAME,
repo_type="dataset",
# You might need to add your HF token to secrets if the dataset is private
# token=os.getenv("HF_TOKEN")
)
logger.info(f"π¦ Unzipping database from {zip_path}...")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(".") # Extracts to the root, creating ./chroma_db
logger.info("β
Database setup complete!")
# Clean up the downloaded zip file to save space
if os.path.exists(zip_path):
os.remove(zip_path)
except Exception as e:
logger.error(f"β CRITICAL ERROR setting up database: {e}", exc_info=True)
# This will likely cause the RAG system to fail loading, which is expected
# if the database isn't available.
# --- RUN DATABASE SETUP *BEFORE* INITIALIZING THE APP ---
setup_database()
# --- STANDARD FLASK APP INITIALIZATION ---
app = Flask(__name__)
app.secret_key = os.urandom(24) # Set a secret key for session signing
# --- CONFIGURE SERVER-SIDE SESSIONS ---
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
Session(app)
google_api_key = os.getenv("GOOGLE_API_KEY")
if not google_api_key:
logger.warning("β οΈ GOOGLE_API_KEY not found in environment variables. LLM calls will fail.")
else:
logger.info("GOOGLE_API_KEY loaded successfully.")
# Initialize LLM
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0.05, google_api_key=google_api_key)
# --- LOAD RAG SYSTEMS (AFTER DB SETUP) ---
logger.info("π Starting Multi-Domain AI Assistant...")
try:
rag_systems = {
'medical': load_rag_system(collection_name="medical_csv_Agentic_retrieval", domain="medical"),
'islamic': load_rag_system(collection_name="islamic_texts_Agentic_retrieval", domain="islamic"),
'insurance': load_rag_system(collection_name="etiqa_Agentic_retrieval", domain="insurance")
}
except Exception as e:
logger.error(f"β FAILED to load RAG systems. Check database path and permissions. Error: {e}", exc_info=True)
rag_systems = {'medical': None, 'islamic': None, 'insurance': None}
# Store systems and LLM on the app for blueprints
app.rag_systems = rag_systems
app.llm = llm
# Register the API blueprint
app.register_blueprint(api_bp)
logger.info(f"β
API Blueprint registered. API endpoints are now available under /api")
# Check initialization status
logger.info("\nπ SYSTEM STATUS:")
for domain, system in rag_systems.items():
status = "β
Ready" if system else "β Failed (DB missing?)"
logger.info(f" {domain}: {status}")
# --- FLASK ROUTES ---
@app.route("/")
def homePage():
# Clear all session history when visiting the home page
session.pop('medical_history', None)
session.pop('islamic_history', None)
session.pop('insurance_history', None)
session.pop('current_medical_document', None)
return render_template("homePage.html")
@app.route("/medical", methods=["GET", "POST"])
def medical_page():
# Use session for history and document context
if request.method == "GET":
# Load all latest data from session (or default to empty if not found)
latest_response = session.pop('latest_medical_response', {}) # POP to clear it after one display
answer = latest_response.get('answer', "")
thoughts = latest_response.get('thoughts', "")
validation = latest_response.get('validation', "")
source = latest_response.get('source', "")
# Clear history only when a user first navigates (not on redirect)
if not latest_response and 'medical_history' not in session:
session.pop('current_medical_document', None)
return render_template("medical_page.html",
history=session.get('medical_history', []),
answer=answer,
thoughts=thoughts,
validation=validation,
source=source)
# POST Request Logic
answer, thoughts, validation, source = "", "", "", ""
history = session.get('medical_history', [])
current_medical_document = session.get('current_medical_document', "")
try:
query=standardize_query(request.form.get("query", ""))
has_image = 'image' in request.files and request.files['image'].filename
has_document = 'document' in request.files and request.files['document'].filename
has_query = request.form.get("query") or request.form.get("question", "")
logger.info(f"POST request received: has_image={has_image}, has_document={has_document}, has_query={has_query}")
if has_document:
# Scenario 3: Query + Document
logger.info("Processing Scenario 3: Query + Document with Medical Swarm")
file = request.files['document']
try:
# Store the new document text in the session
document_text = file.read().decode("utf-8")
session['current_medical_document'] = document_text
current_medical_document = document_text # Use the new document for this turn
except UnicodeDecodeError:
answer = "Error: Could not decode the uploaded document. Please ensure it is a valid text or PDF file."
logger.error("Scenario 3: Document decode error")
thoughts = traceback.format_exc()
swarm_answer = run_medical_swarm(current_medical_document, query)
answer = markdown_bold_to_html(swarm_answer)
history.append(HumanMessage(content=f"[Document Uploaded] Query: '{query}'"))
history.append(AIMessage(content=swarm_answer))
thoughts = "Swarm analysis complete. The process is orchestrated and does not use the ReAct thought process. You can now ask follow-up questions."
source= "Medical Swarm"
validation = (True, "Swarm output generated.") # Swarm has its own validation logic
elif has_image :
#Scenario 1
logger.info("Processing Multimodal RAG: Query + Image")
# --- Step 1 & 2: Image Setup & Vision Analysis ---
file = request.files['image']
upload_dir = "Uploads"
os.makedirs(upload_dir, exist_ok=True)
image_path = os.path.join(upload_dir, file.filename)
try:
file.save(image_path)
file.close()
with open(image_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode("utf-8")
vision_prompt = f"Analyze this image and identify the main subject in a single, concise sentence. The user's query is: '{query}'"
message = HumanMessage(content=[
{"type": "text", "text": vision_prompt},
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_data}"}
])
vision_response = llm.invoke([message])
visual_prediction = vision_response.content
logger.info(f"Vision Prediction: {visual_prediction}")
# --- Create an Enhanced Query ---
enhanced_query = (
f'User Query: "{query}" '
f'Context from an image provided by the LLM: "{visual_prediction}" '
'Based on the user\'s query and the context from LLM, provide a comprehensive answer.'
)
logger.info(f"Enhanced query : {enhanced_query}")
agent = rag_systems['medical']
if not agent: raise Exception("Medical RAG system is not loaded.")
response_dict = agent.answer(enhanced_query, chat_history=history)
answer, thoughts, validation, source = parse_agent_response(response_dict)
history.append(HumanMessage(content=query))
history.append(AIMessage(content=answer))
finally:
if os.path.exists(image_path):
try:
os.remove(image_path)
logger.info(f"Successfully deleted temporary image file: {image_path}")
except PermissionError as e:
logger.warning(f"Could not remove {image_path} after processing. "
f"File may be locked by another process. Error: {e}")
elif query:
# --- SCENARIO 2: TEXT-ONLY QUERY OR SWARM FOLLOW-UP ---
history_for_agent = history
if current_medical_document:
logger.info("Processing Follow-up Query for Document")
history_for_agent = [HumanMessage(content=f"We are discussing this document:\n{current_medical_document}")] + history
else:
logger.info("Processing Text RAG query for Medical domain")
logger.info(f"Original Query: '{query}'")
print(f"π Using chat history with {len(history)} previous messages to create standalone query")
standalone_query = get_standalone_question(query, history_for_agent,llm)
logger.info(f"Standalone Query: '{standalone_query}'")
agent = rag_systems['medical']
if not agent: raise Exception("Medical RAG system is not loaded.")
response_dict = agent.answer(standalone_query, chat_history=history_for_agent)
answer, thoughts, validation, source = parse_agent_response(response_dict)
history.append(HumanMessage(content=query))
history.append(AIMessage(content=answer))
else:
raise ValueError("No query or file provided.")
except Exception as e:
logger.error(f"Error on /medical page: {e}", exc_info=True)
answer = f"An error occurred: {e}"
thoughts = traceback.format_exc()
# Save updated history and LATEST RESPONSE DATA back to the session
session['medical_history'] = history
session['latest_medical_response'] = {
'answer': answer,
'thoughts': thoughts,
'validation': validation,
'source': source
}
session.modified = True
logger.debug(f"Redirecting after saving latest response.")
return redirect(url_for('medical_page'))
@app.route("/medical/clear")
def clear_medical_chat():
session.pop('medical_history', None)
session.pop('current_medical_document', None)
logger.info("Medical chat history cleared.")
return redirect(url_for('medical_page'))
@app.route("/islamic", methods=["GET", "POST"])
def islamic_page():
#Use session
if request.method == "GET":
# Load all latest data from session (or default to empty if not found)
latest_response = session.pop('latest_islamic_response', {}) # POP to clear it after one display
answer = latest_response.get('answer', "")
thoughts = latest_response.get('thoughts', "")
validation = latest_response.get('validation', "")
source = latest_response.get('source', "")
# Clear history only when a user first navigates (no latest_response and no current history)
if not latest_response and 'islamic_history' not in session:
session.pop('islamic_history', None)
return render_template("islamic_page.html",
history=session.get('islamic_history', []),
answer=answer,
thoughts=thoughts,
validation=validation,
source=source)
# POST Request Logic
answer, thoughts, validation, source = "", "", "", ""
history = session.get('islamic_history', [])
# This try/except block wraps the ENTIRE POST logic
try:
query = standardize_query(request.form.get("query", ""))
has_image = 'image' in request.files and request.files['image'].filename
final_query = query # Default to the original query
if has_image:
logger.info("Processing Multimodal RAG query for Islamic domain")
file = request.files['image']
upload_dir = "Uploads"
os.makedirs(upload_dir, exist_ok=True)
image_path = os.path.join(upload_dir, file.filename)
try:
file.save(image_path)
file.close()
with open(image_path, "rb") as img_file:
img_base64 = base64.b64encode(img_file.read()).decode("utf-8")
vision_prompt = f"Analyze this image's main subject. User's query is: '{query}'"
message = HumanMessage(content=[{"type": "text", "text": vision_prompt}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_base64}"}])
visual_prediction = llm.invoke([message]).content
enhanced_query = (
f'User Query: "{query}" '
f'Context from an image provided by the LLM: "{visual_prediction}" '
'Based on the user\'s query and the context from LLM, provide a comprehensive answer.'
)
logger.info(f"Create enchanced query : {enhanced_query}")
final_query = enhanced_query
finally:
if os.path.exists(image_path):
try:
os.remove(image_path)
logger.info(f"Successfully cleaned up {image_path}")
except PermissionError as e:
logger.warning(f"Could not remove {image_path} after processing. "
f"File may be locked. Error: {e}")
elif query: # Only run text logic if there's a query and no image
logger.info("Processing Text RAG query for Islamic domain")
standalone_query = get_standalone_question(query, history,llm)
logger.info(f"Original Query: '{query}'")
print(f"π Using chat history with {len(history)} previous messages to create standalone query")
logger.info(f"Standalone Query: '{standalone_query}'")
final_query = standalone_query
if not final_query:
raise ValueError("No query or file provided.")
agent = rag_systems['islamic']
if not agent: raise Exception("Islamic RAG system is not loaded.")
response_dict = agent.answer(final_query, chat_history=history)
answer, thoughts , validation, source = parse_agent_response(response_dict)
history.append(HumanMessage(content=query))
history.append(AIMessage(content=answer))
except Exception as e:
logger.error(f"Error on /islamic page: {e}", exc_info=True)
answer = f"An error occurred: {e}"
thoughts = traceback.format_exc()
# Save updated history and LATEST RESPONSE DATA back to the session
session['islamic_history'] = history
session['latest_islamic_response'] = {
'answer': answer,
'thoughts': thoughts,
'validation': validation,
'source': source
}
session.modified = True
logger.debug(f"Redirecting after saving latest response.")
return redirect(url_for('islamic_page'))
@app.route("/islamic/clear")
def clear_islamic_chat():
session.pop('islamic_history', None)
logger.info("Islamic chat history cleared.")
return redirect(url_for('islamic_page'))
@app.route("/insurance", methods=["GET", "POST"])
def insurance_page():
if request.method == "GET" :
latest_response = session.pop('latest_insurance_response',{})
answer = latest_response.get('answer', "")
thoughts = latest_response.get('thoughts', "")
validation = latest_response.get('validation', "")
source = latest_response.get('source', "")
if not latest_response and 'insurance_history' not in session:
session.pop('insurance_history', None)
return render_template("insurance_page.html", # You will need to create this HTML file
history=session.get('insurance_history', []),
answer=answer,
thoughts=thoughts,
validation=validation,
source=source)
# POST Request Logic
answer, thoughts, validation, source = "", "", "", ""
history = session.get('insurance_history', [])
try:
query = standardize_query(request.form.get("query", ""))
if query:
logger.info("Processing Text RAG query for Insurance domain")
standalone_query = get_standalone_question(query, history, llm)
logger.info(f"Original Query: '{query}'")
logger.info(f"Standalone Query: '{standalone_query}'")
agent = rag_systems['insurance']
if not agent: raise Exception("Insurance RAG system is not loaded.")
response_dict = agent.answer(standalone_query, chat_history=history)
answer, thoughts, validation, source = parse_agent_response(response_dict)
history.append(HumanMessage(content=query))
history.append(AIMessage(content=answer))
else:
raise ValueError("No query provided.")
except Exception as e:
logger.error(f"Error on /insurance page: {e}", exc_info=True)
answer = f"An error occurred: {e}"
thoughts = traceback.format_exc()
session['insurance_history'] = history
session['latest_insurance_response'] = {
'answer': answer,
'thoughts': thoughts,
'validation': validation,
'source': source
}
session.modified = True
logger.debug(f"Redirecting after saving latest response.")
return redirect(url_for('insurance_page'))
@app.route("/insurance/clear")
def clear_insurance_chat():
session.pop('insurance_history', None)
logger.info("Insurance chat history cleared.")
return redirect(url_for('insurance_page'))
@app.route("/about", methods=["GET"])
def about():
return render_template("about.html")
@app.route('/metrics/<domain>')
def get_metrics(domain):
"""API endpoint to get metrics for a specific domain."""
try:
if domain == "medical" and rag_systems['medical']:
stats = rag_systems['medical'].metrics_tracker.get_stats()
elif domain == "islamic" and rag_systems['islamic']:
stats = rag_systems['islamic'].metrics_tracker.get_stats()
elif domain == "insurance" and rag_systems['insurance']:
stats = rag_systems['insurance'].metrics_tracker.get_stats()
elif not rag_systems.get(domain):
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
else:
return jsonify({"error": "Invalid domain"}), 400
return jsonify(stats)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/metrics/reset/<domain>', methods=['POST'])
def reset_metrics(domain):
"""Reset metrics for a domain (useful for testing)."""
try:
if domain == "medical" and rag_systems['medical']:
rag_systems['medical'].metrics_tracker.reset_metrics()
elif domain == "islamic" and rag_systems['islamic']:
rag_systems['islamic'].metrics_tracker.reset_metrics()
elif domain == "insurance" and rag_systems['insurance']:
rag_systems['insurance'].metrics_tracker.reset_metrics()
elif not rag_systems.get(domain):
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
else:
return jsonify({"error": "Invalid domain"}), 400
return jsonify({"success": True, "message": f"Metrics reset for {domain}"})
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
logger.info("Starting Flask app for deployment testing...")
# This port 7860 is what Hugging Face Spaces expects by default
app.run(host="0.0.0.0", port=7860, debug=False) |