File size: 25,575 Bytes
520ba33 4a20c7a 520ba33 4a20c7a 520ba33 82597a1 2752432 82597a1 bd24f4f 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 d04b15e 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4771fc5 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a d25fa7e 4771fc5 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a e4c08c6 520ba33 4a20c7a 4771fc5 520ba33 4a20c7a 520ba33 d25fa7e 520ba33 4a20c7a 520ba33 d25fa7e 00be4d0 520ba33 4a20c7a 003d105 520ba33 4771fc5 4a20c7a 520ba33 4a20c7a 520ba33 4771fc5 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 4a20c7a 520ba33 82597a1 bd24f4f 82597a1 bd24f4f 82597a1 bd24f4f e8d3d27 bd24f4f 82597a1 4a20c7a 82597a1 4a20c7a 82597a1 4a20c7a 82597a1 4a20c7a 82597a1 4a20c7a 82597a1 520ba33 e495386 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
from flask import Flask, request, render_template, session, url_for, redirect, jsonify
# from flask_session import Session <--- REMOVED
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
import os
import logging
import re
import traceback
import base64
import shutil
import zipfile
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
from PIL import Image
# --- Core Application Imports ---
from src.medical_swarm import run_medical_swarm
from src.utils import load_rag_system, standardize_query, get_standalone_question, parse_agent_response, markdown_bold_to_html
from langchain_google_genai import ChatGoogleGenerativeAI
# Setup logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# These are your "customers". You give them a key.
# In a real app, this would be in a database.
VALID_API_KEYS = {
"anakmail_key_123": "Dr. Amelia (Premium Plan, Unlimited)",
"irfan_key_456": "Irfan (Admin, Unlimited)",
"sistem_gelap": "Demo User (Free Tier, 10 requests)"
}
# --- 1. NEW HELPER FUNCTIONS TO FIX 'TypeError' ---
def hydrate_history(raw_history_list: list) -> list:
"""Converts a list of dicts from session back into LangChain Message objects."""
history = []
if not raw_history_list:
return history
for item in raw_history_list:
if item.get('type') == 'human':
history.append(HumanMessage(content=item.get('content', '')))
elif item.get('type') == 'ai':
history.append(AIMessage(content=item.get('content', '')))
return history
def dehydrate_history(history_messages: list) -> list:
"""Converts LangChain Message objects into a JSON-serializable list of dicts."""
raw_list = []
for msg in history_messages:
if isinstance(msg, HumanMessage):
raw_list.append({'type': 'human', 'content': msg.content})
elif isinstance(msg, AIMessage):
raw_list.append({'type': 'ai', 'content': msg.content})
return raw_list
# --- 2. DATABASE SETUP FUNCTION (For Deployment) ---
def setup_database():
"""Downloads and unzips the ChromaDB folder from Hugging Face Datasets."""
DATASET_REPO_ID = "WanIrfan/atlast-db"
ZIP_FILENAME = "chroma_db.zip"
DB_DIR = "chroma_db"
if os.path.exists(DB_DIR) and os.listdir(DB_DIR):
logger.info("β
Database directory already exists. Skipping download.")
return
logger.info(f"π₯ Downloading database from HF Hub: {DATASET_REPO_ID}")
try:
zip_path = hf_hub_download(repo_id=DATASET_REPO_ID, filename=ZIP_FILENAME, repo_type="dataset")
logger.info(f"π¦ Unzipping database from {zip_path}...")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(".")
logger.info("β
Database setup complete!")
if os.path.exists(zip_path):
os.remove(zip_path)
except Exception as e:
logger.error(f"β CRITICAL ERROR setting up database: {e}", exc_info=True)
# --- RUN DATABASE SETUP *BEFORE* INITIALIZING THE APP ---
setup_database()
# --- STANDARD FLASK APP INITIALIZATION ---
app = Flask(__name__)
app.secret_key = "a_really_strong_static_secret_key_12345"
# --- REMOVED flask_session CONFIG ---
google_api_key = os.getenv("GOOGLE_API_KEY")
if not google_api_key:
logger.warning("β οΈ GOOGLE_API_KEY not found.")
else:
logger.info("GOOGLE_API_KEY loaded successfully.")
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0.05, google_api_key=google_api_key)
# --- LOAD RAG SYSTEMS (AFTER DB SETUP) ---
logger.info("π Starting Multi-Domain AI Assistant...")
try:
rag_systems = {
'medical': load_rag_system(collection_name="medical_csv_Agentic_retrieval", domain="medical"),
'islamic': load_rag_system(collection_name="islamic_texts_Agentic_retrieval", domain="islamic"),
'insurance': load_rag_system(collection_name="etiqa_Agentic_retrieval", domain="insurance")
}
except Exception as e:
logger.error(f"β FAILED to load RAG systems. Error: {e}", exc_info=True)
rag_systems = {'medical': None, 'islamic': None, 'insurance': None}
app.rag_systems = rag_systems
app.llm = llm
logger.info("\nπ SYSTEM STATUS:")
for domain, system in rag_systems.items():
status = "β
Ready" if system else "β Failed (DB missing?)"
logger.info(f" {domain}: {status}")
# --- FLASK WEB UI ROUTES ---
@app.route("/")
def homePage():
session.clear() # Clear all keys
return render_template("homePage.html")
# --- MEDICAL PAGE ---
@app.route("/medical", methods=["GET", "POST"])
def medical_page():
if request.method == "GET":
latest_response = session.pop('latest_medical_response', {})
return render_template("medical_page.html",
history=session.get('medical_history', []),
answer=latest_response.get('answer', ""),
thoughts=latest_response.get('thoughts', ""),
validation=latest_response.get('validation', ""),
source=latest_response.get('source', ""))
answer, thoughts, validation, source = "", "", "", ""
raw_history_list = session.get('medical_history', [])
history_for_agent = hydrate_history(raw_history_list)
current_medical_document = session.get('current_medical_document', "")
query = ""
try:
query=standardize_query(request.form.get("query", ""))
has_image = 'image' in request.files and request.files['image'].filename
has_document = 'document' in request.files and request.files['document'].filename
if not (query or has_image or has_document):
raise ValueError("No query or file provided.")
if has_document:
logger.info("Processing Document with Medical Swarm")
file = request.files['document']
document_text = file.read().decode("utf-8")
session['current_medical_document'] = document_text
current_medical_document = document_text
swarm_answer = run_medical_swarm(current_medical_document, query)
answer = markdown_bold_to_html(swarm_answer)
thoughts = "Swarm analysis complete."
validation = (True, "Swarm output generated.")
source = "Medical Swarm"
history_for_agent.append(HumanMessage(content=f"[Document Uploaded] Query: '{query}'"))
history_for_agent.append(AIMessage(content=answer))
elif has_image :
logger.info("Processing Multimodal RAG: Query + Image")
file = request.files['image']
upload_dir = "Uploads"
os.makedirs(upload_dir, exist_ok=True)
image_path = os.path.join(upload_dir, file.filename)
try:
file.save(image_path); file.close()
with open(image_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode("utf-8")
vision_prompt = f"Analyze image. Query: '{query}'"
message = HumanMessage(content=[{"type": "text", "text": vision_prompt}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_data}"}])
visual_prediction = llm.invoke([message]).content
enhanced_query = (f'User Query: "{query}" Context from Image: "{visual_prediction}"')
agent = rag_systems['medical']
if not agent: raise Exception("Medical RAG system not loaded.")
response_dict = agent.answer(enhanced_query, chat_history=history_for_agent)
answer, thoughts, validation, source = parse_agent_response(response_dict)
history_for_agent.append(HumanMessage(content=query + " [Image Attached]"))
history_for_agent.append(AIMessage(content=answer))
finally:
if os.path.exists(image_path):
try: os.remove(image_path)
except Exception as e: logger.warning(f"Could not remove {image_path}. Error: {e}")
elif query:
history_doc_context = history_for_agent
if current_medical_document:
history_doc_context = [HumanMessage(content=f"Document Context:\n{current_medical_document}")] + history_for_agent
else:
logger.info("Processing Text RAG query for Medical domain")
standalone_query = get_standalone_question(query, history_doc_context, llm)
logger.info(f"Standalone Query : {standalone_query}")
agent = rag_systems['medical']
if not agent: raise Exception("Medical RAG system not loaded.")
response_dict = agent.answer(standalone_query, chat_history=history_doc_context)
answer, thoughts, validation, source = parse_agent_response(response_dict)
history_for_agent.append(HumanMessage(content=query))
history_for_agent.append(AIMessage(content=answer))
except Exception as e:
logger.error(f"Error on /medical page: {e}", exc_info=True)
answer = f"An error occurred: {e}"
thoughts = traceback.format_exc()
validation = (False, "Exception")
source = "Application Error"
history_for_agent.append(HumanMessage(content=query if query else "Failed request"))
history_for_agent.append(AIMessage(content=answer))
session['medical_history'] = dehydrate_history(history_for_agent)
session['latest_medical_response'] = {'answer': answer, 'thoughts': thoughts, 'validation': validation, 'source': source}
session.modified = True
logger.info(f"DEBUG: Saving to session: ANSWER='{answer[:50]}...'")
return redirect(url_for('medical_page'))
@app.route("/medical/clear")
def clear_medical_chat():
session.pop('medical_history', None)
session.pop('current_medical_document', None)
return redirect(url_for('medical_page'))
# --- ISLAMIC PAGE ---
@app.route("/islamic", methods=["GET", "POST"])
def islamic_page():
if request.method == "GET":
latest_response = session.pop('latest_islamic_response', {})
return render_template("islamic_page.html",
history=session.get('islamic_history', []),
answer=latest_response.get('answer', ""),
thoughts=latest_response.get('thoughts', ""),
validation=latest_response.get('validation', ""),
source=latest_response.get('source', ""))
answer, thoughts, validation, source = "", "", "", ""
raw_history_list = session.get('islamic_history', [])
history_for_agent = hydrate_history(raw_history_list)
query = ""
try:
query = standardize_query(request.form.get("query", ""))
has_image = 'image' in request.files and request.files['image'].filename
if not (query or has_image):
raise ValueError("No query or file provided.")
final_query = query
if has_image:
logger.info("Processing Multimodal RAG query for Islamic domain")
file = request.files['image']
upload_dir = "Uploads"
os.makedirs(upload_dir, exist_ok=True)
image_path = os.path.join(upload_dir, file.filename)
try:
file.save(image_path); file.close()
with open(image_path, "rb") as img_file:
img_base64 = base64.b64encode(img_file.read()).decode("utf-8")
vision_prompt = f"Analyze image. Query: '{query}'"
message = HumanMessage(content=[{"type": "text", "text": vision_prompt}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_base64}"}])
visual_prediction = llm.invoke([message]).content
final_query = (f'User Query: "{query}" Context from Image: "{visual_prediction}"')
finally:
if os.path.exists(image_path):
try: os.remove(image_path)
except Exception as e: logger.warning(f"Could not remove {image_path}. Error: {e}")
history_for_agent.append(HumanMessage(content=query + " [Image Attached]"))
elif query:
logger.info("Processing Text RAG query for Islamic domain")
final_query = get_standalone_question(query, history_for_agent, llm)
history_for_agent.append(HumanMessage(content=query))
agent = rag_systems['islamic']
if not agent: raise Exception("Islamic RAG system is not loaded.")
response_dict = agent.answer(final_query, chat_history=history_for_agent[:-1])
answer, thoughts, validation, source = parse_agent_response(response_dict)
history_for_agent.append(AIMessage(content=answer))
except Exception as e:
logger.error(f"Error on /islamic page: {e}", exc_info=True)
answer = f"An error occurred: {e}"; thoughts = traceback.format_exc(); validation = (False, "Exception"); source = "Application Error"
if not (has_image or query): history_for_agent.append(HumanMessage(content="Failed request"))
else: history_for_agent.append(HumanMessage(content=query))
history_for_agent.append(AIMessage(content=answer))
session['islamic_history'] = dehydrate_history(history_for_agent)
session['latest_islamic_response'] = {'answer': answer, 'thoughts': thoughts, 'validation': validation, 'source': source}
session.modified = True
logger.info(f"DEBUG: Saving to session: ANSWER='{answer[:50]}...'")
return redirect(url_for('islamic_page'))
@app.route("/islamic/clear")
def clear_islamic_chat():
session.pop('islamic_history', None)
return redirect(url_for('islamic_page'))
# --- INSURANCE PAGE ---
@app.route("/insurance", methods=["GET", "POST"])
def insurance_page():
if request.method == "GET" :
latest_response = session.pop('latest_insurance_response',{})
return render_template("insurance_page.html",
history=session.get('insurance_history', []),
answer=latest_response.get('answer', ""),
thoughts=latest_response.get('thoughts', ""),
validation=latest_response.get('validation', ""),
source=latest_response.get('source', ""))
answer, thoughts, validation, source = "", "", "", ""
raw_history_list = session.get('insurance_history', [])
history_for_agent = hydrate_history(raw_history_list)
query = ""
try:
query = standardize_query(request.form.get("query", ""))
if not query:
raise ValueError("No query provided.")
standalone_query = get_standalone_question(query, history_for_agent, llm)
agent = rag_systems['insurance']
if not agent: raise Exception("Insurance RAG system is not loaded.")
response_dict = agent.answer(standalone_query, chat_history=history_for_agent)
answer, thoughts, validation, source = parse_agent_response(response_dict)
history_for_agent.append(HumanMessage(content=query))
history_for_agent.append(AIMessage(content=answer))
except Exception as e:
logger.error(f"Error on /insurance page: {e}", exc_info=True)
answer = f"An error occurred: {e}"; thoughts = traceback.format_exc(); validation = (False, "Exception"); source = "Application Error"
history_for_agent.append(HumanMessage(content=query))
history_for_agent.append(AIMessage(content=answer))
session['insurance_history'] = dehydrate_history(history_for_agent)
session['latest_insurance_response'] = {'answer': answer, 'thoughts': thoughts, 'validation': validation, 'source': source}
session.modified = True
logger.debug(f"Redirecting after saving latest response.")
return redirect(url_for('insurance_page'))
@app.route("/insurance/clear")
def clear_insurance_chat():
session.pop('insurance_history', None)
return redirect(url_for('insurance_page'))
@app.route("/about", methods=["GET"])
def about():
return render_template("about.html")
# --- (Metrics routes remain unchanged) ---
@app.route('/metrics/<domain>')
def get_metrics(domain):
try:
if domain == "medical" and rag_systems['medical']:
stats = rag_systems['medical'].metrics_tracker.get_stats()
elif domain == "islamic" and rag_systems['islamic']:
stats = rag_systems['islamic'].metrics_tracker.get_stats()
elif domain == "insurance" and rag_systems['insurance']:
stats = rag_systems['insurance'].metrics_tracker.get_stats()
elif not rag_systems.get(domain):
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
else:
return jsonify({"error": "Invalid domain"}), 400
return jsonify(stats)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/metrics/reset/<domain>', methods=['POST'])
def reset_metrics(domain):
try:
if domain == "medical" and rag_systems['medical']:
rag_systems['medical'].metrics_tracker.reset_metrics()
elif domain == "islamic" and rag_systems['islamic']:
rag_systems['islamic'].metrics_tracker.reset_metrics()
elif domain == "insurance" and rag_systems['insurance']:
rag_systems['insurance'].metrics_tracker.reset_metrics()
elif not rag_systems.get(domain):
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
else:
return jsonify({"error": "Invalid domain"}), 400
return jsonify({"success": True, "message": f"Metrics reset for {domain}"})
except Exception as e:
return jsonify({"error": str(e)}), 500
# Helper function to check API key
API_USAGE = {}
def check_api_key(request_data):
api_key = request_data.get("api_key")
# 1. Check if key exists
if not api_key or api_key not in VALID_API_KEYS:
return False, {"error": "Invalid API key"}, 401
# 2. Initialize counter for this key if new
if api_key not in API_USAGE:
API_USAGE[api_key] = 0
# 3. Check Quota (The "Selling" Logic)
if api_key == "sistem_gelap" and API_USAGE[api_key] >= 10:
logger.warning(f"Quota exceeded for user: {VALID_API_KEYS[api_key]}")
return False, {"error": "Quota exceeded. Free tier is limited to 10 requests."}, 429
# 4. Increment Counter
API_USAGE[api_key] += 1
logger.info(f"User {VALID_API_KEYS[api_key]} used {API_USAGE[api_key]} requests.")
return True, None, None
# Helper function to save and process uploaded files (Base64)
def process_base64_file(base64_string, file_type):
try:
# Decode the base64 string
file_bytes = base64.b64decode(base64_string)
# Save to a temporary file
upload_dir = "Uploads"
os.makedirs(upload_dir, exist_ok=True)
# Use a unique filename
temp_filename = f"{file_type}_{int(time.time())}.tmp"
temp_path = os.path.join(upload_dir, temp_filename)
with open(temp_path, 'wb') as f:
f.write(file_bytes)
logger.info(f"Saved temporary {file_type} to {temp_path}")
return temp_path
except Exception as e:
logger.error(f"Error decoding/saving base64 file: {e}")
return None
# --- 3. NEW API-ONLY ROUTES ---
@app.route("/api/medical", methods=["POST"])
def medical_api():
try:
data = request.json
is_valid, error_response, status_code = check_api_key(data)
if not is_valid:
return jsonify(error_response), status_code
query = data.get("query")
if not query:
return jsonify({"error": "No query provided"}), 400
# Hydrate history from the JSON payload
raw_history = data.get("history", [])
history_for_agent = hydrate_history(raw_history)
agent = rag_systems['medical']
if not agent:
return jsonify({"error": "Medical RAG system not loaded"}), 500
# --- Handle File Uploads (Base64) ---
enhanced_query = query
temp_file_path = None
if data.get("document_base64"):
logger.info("API: Processing base64 document for Swarm")
doc_text = base64.b64decode(data.get("document_base64")).decode('utf-8')
swarm_answer = run_medical_swarm(doc_text, query)
response_dict = {
"answer": markdown_bold_to_html(swarm_answer),
"thoughts": "Swarm analysis complete.",
"validation": (True, "Swarm output generated."),
"source": "Medical Swarm",
"response_time": 0 # Not tracked for swarm in this path
}
return jsonify(response_dict)
elif data.get("image_base64"):
logger.info("API: Processing base64 image")
temp_file_path = process_base64_file(data.get("image_base64"), "image")
if not temp_file_path:
return jsonify({"error": "Invalid base64 image data"}), 400
with open(temp_file_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode("utf-8")
vision_prompt = f"Analyze image. Query: '{query}'"
message = HumanMessage(content=[{"type": "text", "text": vision_prompt}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_data}"}])
visual_prediction = llm.invoke([message]).content
enhanced_query = (f'User Query: "{query}" Context from Image: "{visual_prediction}"')
# Run the agent
response_dict = agent.answer(enhanced_query, chat_history=history_for_agent)
# Clean up temp file
if temp_file_path and os.path.exists(temp_file_path):
os.remove(temp_file_path)
# Return the full, clean JSON response
return jsonify(response_dict)
except Exception as e:
logger.error(f"Error on /api/medical: {e}", exc_info=True)
return jsonify({"error": str(e)}), 500
@app.route("/api/islamic", methods=["POST"])
def islamic_api():
try:
data = request.json
is_valid, error_response, status_code = check_api_key(data)
if not is_valid: return jsonify(error_response), status_code
query = data.get("query")
if not query: return jsonify({"error": "No query provided"}), 400
raw_history = data.get("history", [])
history_for_agent = hydrate_history(raw_history)
agent = rag_systems['islamic']
if not agent: return jsonify({"error": "Islamic RAG system not loaded"}), 500
enhanced_query = query
temp_file_path = None
if data.get("image_base64"):
logger.info("API: Processing base64 image")
temp_file_path = process_base64_file(data.get("image_base64"), "image")
if not temp_file_path:
return jsonify({"error": "Invalid base64 image data"}), 400
with open(temp_file_path, "rb") as img_file:
img_data = base64.b64encode(img_file.read()).decode("utf-8")
vision_prompt = f"Analyze image. Query: '{query}'"
message = HumanMessage(content=[{"type": "text", "text": vision_prompt}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_data}"}])
visual_prediction = llm.invoke([message]).content
enhanced_query = (f'User Query: "{query}" Context from Image: "{visual_prediction}"')
response_dict = agent.answer(enhanced_query, chat_history=history_for_agent)
if temp_file_path and os.path.exists(temp_file_path):
os.remove(temp_file_path)
return jsonify(response_dict)
except Exception as e:
logger.error(f"Error on /api/islamic: {e}", exc_info=True)
return jsonify({"error": str(e)}), 500
@app.route("/api/insurance", methods=["POST"])
def insurance_api():
try:
data = request.json
is_valid, error_response, status_code = check_api_key(data)
if not is_valid: return jsonify(error_response), status_code
query = data.get("query")
if not query: return jsonify({"error": "No query provided"}), 400
raw_history = data.get("history", [])
history_for_agent = hydrate_history(raw_history)
agent = rag_systems['insurance']
if not agent: return jsonify({"error": "Insurance RAG system not loaded"}), 500
response_dict = agent.answer(query, chat_history=history_for_agent)
return jsonify(response_dict)
except Exception as e:
logger.error(f"Error on /api/insurance: {e}", exc_info=True)
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
logger.info("Starting Flask app for deployment testing...")
app.run(host="0.0.0.0", port=7860, debug=False) |