Spaces:
Sleeping
Sleeping
| import joblib | |
| import pandas as pd | |
| from flask import Flask, request, jsonify | |
| # Initialize Flask app with a name | |
| churn_predictor_api = Flask("Customer Churn Predictor") | |
| # Load the trained churn prediction model | |
| model = joblib.load("churn_prediction_model_v1_0.joblib") | |
| # Define a route for the home page | |
| def home(): | |
| return "Welcome to the Customer Churn Prediction API!" | |
| # Define an endpoint to predict churn for a single customer | |
| def predict_churn(): | |
| # Get JSON data from the request | |
| customer_data = request.get_json() | |
| # Extract relevant customer features from the input data | |
| sample = { | |
| 'CreditScore': customer_data['CreditScore'], | |
| 'Geography': customer_data['Geography'], | |
| 'Age': customer_data['Age'], | |
| 'Tenure': customer_data['Tenure'], | |
| 'Balance': customer_data['Balance'], | |
| 'NumOfProducts': customer_data['NumOfProducts'], | |
| 'HasCrCard': customer_data['HasCrCard'], | |
| 'IsActiveMember': customer_data['IsActiveMember'], | |
| 'EstimatedSalary': customer_data['EstimatedSalary'] | |
| } | |
| # Convert the extracted data into a DataFrame | |
| input_data = pd.DataFrame([sample]) | |
| # Make a churn prediction using the trained model | |
| prediction = model.predict(input_data).tolist()[0] | |
| # Map prediction result to a human-readable label | |
| prediction_label = "churn" if prediction == 1 else "not churn" | |
| # Return the prediction as a JSON response | |
| return jsonify({'Prediction': prediction_label}) | |
| # Define an endpoint to predict churn for a batch of customers | |
| def predict_churn_batch(): | |
| # Get the uploaded CSV file from the request | |
| file = request.files['file'] | |
| # Read the file into a DataFrame | |
| input_data = pd.read_csv(file) | |
| # Make predictions for the batch data and convert raw predictions into a readable format | |
| predictions = [ | |
| 'Churn' if x == 1 | |
| else "Not Churn" | |
| for x in model.predict(input_data.drop("CustomerId",axis=1)).tolist() | |
| ] | |
| cust_id_list = input_data.CustomerId.values.tolist() | |
| output_dict = dict(zip(cust_id_list, predictions)) | |
| return output_dict | |
| # Run the Flask app in debug mode | |
| if __name__ == '__main__': | |
| app.run(debug=True) | |