Create Child Mortality vs Population

#1
Files changed (1) hide show
  1. pages/Child Mortality vs Population +77 -0
pages/Child Mortality vs Population ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import altair as alt
4
+
5
+ # Load data
6
+ child_mortality_path = "child_mortality_0_5_year_olds_dying_per_1000_born.csv"
7
+ population_path = "pop.csv"
8
+
9
+ child_mortality = pd.read_csv(child_mortality_path)
10
+ population = pd.read_csv(population_path)
11
+
12
+ # Data Cleaning
13
+ def convert_population(value):
14
+ if isinstance(value, str):
15
+ if 'B' in value:
16
+ return float(value.replace('B', '')) * 1_000_000_000
17
+ elif 'M' in value:
18
+ return float(value.replace('M', '')) * 1_000_000
19
+ elif 'k' in value:
20
+ return float(value.replace('k', '')) * 1_000
21
+ else:
22
+ return float(value)
23
+ return value
24
+
25
+ population.iloc[:, 1:] = population.iloc[:, 1:].applymap(convert_population)
26
+
27
+ # Title and Description
28
+ st.title("Child Mortality Rate vs Population")
29
+
30
+ st.write("""
31
+ This visualization explores the relationship between child mortality rates (per 1,000 live births) and population size for a selected country over time.
32
+ By displaying both metrics side-by-side on a dual-y-axis chart, the visual aims to provide insights into how population trends and child mortality rates have evolved across decades.
33
+ The visualization is interactive, allowing users to select a country from the dropdown menu. This enables tailored exploration of trends specific to different countries.
34
+ Hovering over the chart provides tooltips with detailed information for each data point, including the year, population size, and child mortality rate.
35
+ """)
36
+
37
+ st.subheader("Select a Country")
38
+ countries = sorted(child_mortality['country'].unique())
39
+ selected_country = st.selectbox("Country", countries, index=0)
40
+
41
+ if selected_country:
42
+
43
+ mortality_country = child_mortality[child_mortality['country'] == selected_country].melt(
44
+ id_vars='country', var_name='year', value_name='child_mortality'
45
+ )
46
+ population_country = population[population['country'] == selected_country].melt(
47
+ id_vars='country', var_name='year', value_name='population'
48
+ )
49
+
50
+ merged_country_data = pd.merge(mortality_country, population_country, on=['country', 'year'], how='inner')
51
+ merged_country_data['year'] = merged_country_data['year'].astype(int)
52
+ merged_country_data = merged_country_data[merged_country_data['year'] % 20 == 0]
53
+
54
+ # Dual-Y Axis Chart
55
+ dual_axis_chart = alt.layer(
56
+ # First Layer: Child Mortality
57
+ alt.Chart(merged_country_data).mark_line(point=True).encode(
58
+ x=alt.X('year:O', title='Year (Every 20 Years)', axis=alt.Axis(labelAngle=0)),
59
+ y=alt.Y('child_mortality:Q', title='Child Mortality Rate (per 1,000 live births)', axis=alt.Axis(titleColor='lightblue')),
60
+ tooltip=['year', 'child_mortality']
61
+ ).properties(
62
+ width=800,
63
+ height=400,
64
+ ),
65
+ # Second Layer: Population
66
+ alt.Chart(merged_country_data).mark_line(color='orange', point=True).encode(
67
+ x=alt.X('year:O'),
68
+ y=alt.Y('population:Q', title='Population (in millions)', axis=alt.Axis(titleColor='orange')),
69
+ tooltip=['year', 'population']
70
+ )
71
+ ).resolve_scale(
72
+ y='independent'
73
+ ).properties(
74
+ title=f" Child Mortality and Population Trends in {selected_country}"
75
+ )
76
+
77
+ st.altair_chart(dual_axis_chart, use_container_width=True)