Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,8 @@ import gradio as gr
|
|
| 3 |
from unsloth import FastLanguageModel
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
-
from transformers import
|
|
|
|
| 7 |
import os
|
| 8 |
|
| 9 |
# --- Configuration ---
|
|
@@ -11,8 +12,7 @@ import os
|
|
| 11 |
BASE_MODEL_NAME = "unsloth/gemma-3n-E4B-it"
|
| 12 |
|
| 13 |
# 2. Your PEFT (LoRA) Model Name on Hugging Face Hub
|
| 14 |
-
|
| 15 |
-
PEFT_MODEL_NAME = "lyimo/mosquito-breeding-detection" # Or your Hugging Face repo path
|
| 16 |
|
| 17 |
# 3. Max sequence length (should match or exceed training setting)
|
| 18 |
MAX_SEQ_LENGTH = 2048
|
|
@@ -35,99 +35,63 @@ tokenizer = get_chat_template(tokenizer, chat_template="gemma-3")
|
|
| 35 |
|
| 36 |
print("Model and tokenizer loaded successfully!")
|
| 37 |
|
|
|
|
| 38 |
# --- Inference Function ---
|
| 39 |
def analyze_image(image, prompt):
|
| 40 |
"""
|
| 41 |
-
Analyzes the image using the fine-tuned model.
|
| 42 |
"""
|
| 43 |
if image is None:
|
| 44 |
return "Please upload an image."
|
| 45 |
|
| 46 |
-
# Save the uploaded image temporarily (or pass the PIL object, see notes)
|
| 47 |
-
# Unsloth's tokenizer often expects the image path during apply_chat_template
|
| 48 |
-
# for multimodal inputs.
|
| 49 |
temp_image_path = "temp_uploaded_image.jpg"
|
| 50 |
try:
|
| 51 |
-
image.save(temp_image_path)
|
| 52 |
|
| 53 |
-
# Construct messages
|
| 54 |
messages = [
|
| 55 |
{
|
| 56 |
"role": "user",
|
| 57 |
"content": [
|
| 58 |
-
{"type": "image", "image": temp_image_path},
|
| 59 |
{"type": "text", "text": prompt}
|
| 60 |
]
|
| 61 |
}
|
| 62 |
]
|
| 63 |
|
| 64 |
-
# Apply chat template
|
| 65 |
full_prompt = tokenizer.apply_chat_template(
|
| 66 |
messages,
|
| 67 |
tokenize=False,
|
| 68 |
add_generation_prompt=True
|
| 69 |
)
|
| 70 |
|
| 71 |
-
# Tokenize inputs
|
| 72 |
inputs = tokenizer(
|
| 73 |
full_prompt,
|
| 74 |
return_tensors="pt",
|
| 75 |
).to(model.device)
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
self.print_len = 0
|
| 91 |
-
|
| 92 |
-
def put(self, value):
|
| 93 |
-
if self.callback:
|
| 94 |
-
# Decode the current token(s)
|
| 95 |
-
self.token_cache.extend(value.tolist())
|
| 96 |
-
text = self.tokenizer.decode(self.token_cache, skip_special_tokens=True)
|
| 97 |
-
# Call the callback with the new text
|
| 98 |
-
self.callback(text[len(output_text):]) # Send only the new part
|
| 99 |
-
# Update output_text locally to track progress
|
| 100 |
-
nonlocal output_text
|
| 101 |
-
output_text = text
|
| 102 |
-
|
| 103 |
-
def end(self):
|
| 104 |
-
if self.callback:
|
| 105 |
-
# Ensure any remaining text is sent
|
| 106 |
-
self.callback("") # Signal end, or send final text if needed differently
|
| 107 |
-
self.token_cache = []
|
| 108 |
-
self.print_len = 0
|
| 109 |
-
|
| 110 |
-
streamer = GradioTextStreamer(tokenizer, callback=text_collector)
|
| 111 |
-
|
| 112 |
-
# Start generation in a separate thread to allow streaming
|
| 113 |
-
import threading
|
| 114 |
-
def generate_text():
|
| 115 |
-
_ = model.generate(
|
| 116 |
-
**inputs,
|
| 117 |
-
max_new_tokens=1024,
|
| 118 |
-
streamer=streamer,
|
| 119 |
-
# You can add other generation parameters here
|
| 120 |
-
# temperature=0.7,
|
| 121 |
-
# top_p=0.95,
|
| 122 |
-
# do_sample=True
|
| 123 |
-
)
|
| 124 |
-
# Signal completion after generation finishes
|
| 125 |
-
yield output_text # Final yield to ensure completeness
|
| 126 |
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
except Exception as e:
|
| 133 |
error_msg = f"An error occurred during processing: {str(e)}"
|
|
@@ -138,6 +102,7 @@ def analyze_image(image, prompt):
|
|
| 138 |
if os.path.exists(temp_image_path):
|
| 139 |
os.remove(temp_image_path)
|
| 140 |
|
|
|
|
| 141 |
# --- Gradio Interface ---
|
| 142 |
with gr.Blocks() as demo:
|
| 143 |
gr.Markdown("# 🦟 Mosquito Breeding Site Detector")
|
|
@@ -155,13 +120,14 @@ with gr.Blocks() as demo:
|
|
| 155 |
output_text = gr.Textbox(label="Analysis Result", interactive=False, lines=15)
|
| 156 |
|
| 157 |
# Connect the button to the function
|
|
|
|
|
|
|
| 158 |
submit_btn.click(
|
| 159 |
fn=analyze_image,
|
| 160 |
inputs=[image_input, prompt_input],
|
| 161 |
-
outputs=output_text
|
| 162 |
-
streaming=True # Enable streaming output
|
| 163 |
)
|
| 164 |
|
| 165 |
# Launch the app
|
| 166 |
if __name__ == "__main__":
|
| 167 |
-
demo.launch()
|
|
|
|
| 3 |
from unsloth import FastLanguageModel
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
+
from transformers import TextIteratorStreamer
|
| 7 |
+
from threading import Thread
|
| 8 |
import os
|
| 9 |
|
| 10 |
# --- Configuration ---
|
|
|
|
| 12 |
BASE_MODEL_NAME = "unsloth/gemma-3n-E4B-it"
|
| 13 |
|
| 14 |
# 2. Your PEFT (LoRA) Model Name on Hugging Face Hub
|
| 15 |
+
PEFT_MODEL_NAME = "lyimo/mosquito-breeding-detection"
|
|
|
|
| 16 |
|
| 17 |
# 3. Max sequence length (should match or exceed training setting)
|
| 18 |
MAX_SEQ_LENGTH = 2048
|
|
|
|
| 35 |
|
| 36 |
print("Model and tokenizer loaded successfully!")
|
| 37 |
|
| 38 |
+
|
| 39 |
# --- Inference Function ---
|
| 40 |
def analyze_image(image, prompt):
|
| 41 |
"""
|
| 42 |
+
Analyzes the image using the fine-tuned model and streams the output.
|
| 43 |
"""
|
| 44 |
if image is None:
|
| 45 |
return "Please upload an image."
|
| 46 |
|
|
|
|
|
|
|
|
|
|
| 47 |
temp_image_path = "temp_uploaded_image.jpg"
|
| 48 |
try:
|
| 49 |
+
image.save(temp_image_path)
|
| 50 |
|
|
|
|
| 51 |
messages = [
|
| 52 |
{
|
| 53 |
"role": "user",
|
| 54 |
"content": [
|
| 55 |
+
{"type": "image", "image": temp_image_path},
|
| 56 |
{"type": "text", "text": prompt}
|
| 57 |
]
|
| 58 |
}
|
| 59 |
]
|
| 60 |
|
|
|
|
| 61 |
full_prompt = tokenizer.apply_chat_template(
|
| 62 |
messages,
|
| 63 |
tokenize=False,
|
| 64 |
add_generation_prompt=True
|
| 65 |
)
|
| 66 |
|
|
|
|
| 67 |
inputs = tokenizer(
|
| 68 |
full_prompt,
|
| 69 |
return_tensors="pt",
|
| 70 |
).to(model.device)
|
| 71 |
|
| 72 |
+
# Use TextIteratorStreamer for simpler, more robust streaming
|
| 73 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 74 |
+
|
| 75 |
+
# Define generation arguments
|
| 76 |
+
generation_kwargs = dict(
|
| 77 |
+
**inputs,
|
| 78 |
+
streamer=streamer,
|
| 79 |
+
max_new_tokens=1024,
|
| 80 |
+
# You can add other generation parameters here
|
| 81 |
+
# temperature=0.7,
|
| 82 |
+
# top_p=0.95,
|
| 83 |
+
# do_sample=True
|
| 84 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# Run generation in a separate thread to avoid blocking the UI
|
| 87 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 88 |
+
thread.start()
|
| 89 |
+
|
| 90 |
+
# Yield the generated text as it becomes available
|
| 91 |
+
generated_text = ""
|
| 92 |
+
for new_text in streamer:
|
| 93 |
+
generated_text += new_text
|
| 94 |
+
yield generated_text
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
error_msg = f"An error occurred during processing: {str(e)}"
|
|
|
|
| 102 |
if os.path.exists(temp_image_path):
|
| 103 |
os.remove(temp_image_path)
|
| 104 |
|
| 105 |
+
|
| 106 |
# --- Gradio Interface ---
|
| 107 |
with gr.Blocks() as demo:
|
| 108 |
gr.Markdown("# 🦟 Mosquito Breeding Site Detector")
|
|
|
|
| 120 |
output_text = gr.Textbox(label="Analysis Result", interactive=False, lines=15)
|
| 121 |
|
| 122 |
# Connect the button to the function
|
| 123 |
+
# The 'streaming=True' flag in Gradio 3 is deprecated. The streaming behavior
|
| 124 |
+
# is now automatically handled by using a generator function (with 'yield').
|
| 125 |
submit_btn.click(
|
| 126 |
fn=analyze_image,
|
| 127 |
inputs=[image_input, prompt_input],
|
| 128 |
+
outputs=output_text
|
|
|
|
| 129 |
)
|
| 130 |
|
| 131 |
# Launch the app
|
| 132 |
if __name__ == "__main__":
|
| 133 |
+
demo.launch()
|