pytrade-backend / analysestock.py
Oviya
update prediction
8dfbce4
import yfinance as yf
import pandas as pd
import numpy as np
import talib
import math
import requests
import time
import datetime
import os
from pathlib import Path
from datetime import timedelta
from collections import OrderedDict
from rsistrategies import get_rsi_trade_signal
from macdstrategies import get_macd_trade_signal
from emastrategies import get_ema_trade_signal
from atrstrategies import get_atr_trade_signal
from adxstrategies import get_adx_trade_signal
from fibostrategies import get_fibonacci_trade_signal
from priceactionstrategies import get_priceaction_trade_signal
from srstrategies import get_support_resistance_signal
from bbstrategies import get_bollinger_trade_signal
from fundamental import get_fundamental_details
from news import get_latest_news_with_sentiment
from highlow_forecast import forecast_next_15_high_low
import os, numpy as np, pandas as pd
BASE_DIR = Path(__file__).resolve().parent
# ===================== TA scoring =====================
def calculate_technical_analysis_score(indicator_scores):
indicator_weights = {
'RSI': 13,
'MACD': 13,
'ATR': 5,
'ADX': 4,
'EMA': 13,
'PriceAction': 14,
'Bollinger': 10,
'Fibonacci': 4,
'SR': 9
}
weight_values = list(indicator_weights.values())
weighted_score = sum(score * weight for score, weight in zip(indicator_scores, weight_values))
total_weight = sum(weight_values)
technical_analysis_score = (weighted_score / (total_weight * 100)) * 85
overall_ta_signal_100 = np.where(
technical_analysis_score > 65, 'Buy',
np.where(technical_analysis_score > 40, 'Neutral', 'DBuy')
)
return technical_analysis_score, overall_ta_signal_100
def signal_from_score(score, max_points, buy_frac=0.65, neutral_frac=0.40):
buy_cutoff = buy_frac * max_points
neutral_cutoff = neutral_frac * max_points
if score > buy_cutoff:
return "Buy"
elif score > neutral_cutoff:
return "Neutral"
else:
return "DBuy"
# ================== Pivot levels & trade ==================
def calculate_pivot_points(ticker, score, live_price, atr_period=14):
data = yf.download(ticker, period="2mo", interval="1wk")
df = yf.download(ticker, period="2mo", interval="1d")
if score < 50:
return {
"remarks": "Score is below 50%, avoid trading. No trade recommendation",
"pivot_point": "N/A", "resistance1": "N/A", "support1": "N/A",
"resistance2": "N/A", "support2": "N/A",
"resistance3": "N/A", "support3": "N/A",
"entry_point": "N/A", "stop_loss": "N/A", "target_price": "N/A",
"s1_pect": "N/A", "s2_pect": "N/A", "s3_pect": "N/A",
"r1_pect": "N/A", "r2_pect": "N/A", "r3_pect": "N/A", "p1_pect": "N/A"
}
if 50 <= score < 65:
stoploss_multiplier, risk_reward_ratio = 1.2, 1.5
remarks = "Neutral confidence - Monitor the price for further confirmation."
elif 65 <= score < 70:
stoploss_multiplier, risk_reward_ratio = 1.5, 2.0
remarks = "Moderate confidence - Conservative stop loss and reward."
elif 70 <= score < 80:
stoploss_multiplier, risk_reward_ratio = 1.8, 2.5
remarks = "Good confidence - Balanced approach."
else:
stoploss_multiplier, risk_reward_ratio = 2.0, 3.0
remarks = "High confidence - Aggressive approach."
close_prices = df['Close'].to_numpy().flatten()
high_prices = df['High'].to_numpy().flatten()
low_prices = df['Low'].to_numpy().flatten()
df['ATR'] = talib.ATR(high_prices, low_prices, close_prices, timeperiod=atr_period)
latest_atr = df['ATR'].iloc[-1]
entry_point = live_price
stop_loss = entry_point - (stoploss_multiplier * latest_atr)
target_price = entry_point + ((entry_point - stop_loss) * risk_reward_ratio)
previous_week = data.iloc[-2]
high, low, close = previous_week["High"], previous_week["Low"], previous_week["Close"]
P = (high + low + close) / 3
R1 = (2 * P) - low
S1 = (2 * P) - high
R2 = P + (high - low)
S2 = P - (high - low)
R3 = high + 2 * (P - low)
S3 = low - 2 * (high - P)
p1_pect = ((P - live_price) / P) * 100
s1_pect = ((S1 - live_price) / S1) * 100
s2_pect = ((S2 - live_price) / S2) * 100
s3_pect = ((S3 - live_price) / S3) * 100
r1_pect = ((R1 - live_price) / R1) * 100
r2_pect = ((R2 - live_price) / R2) * 100
r3_pect = ((R3 - live_price) / R3) * 100
return {
"pivot_point": round(float(P), 2),
"resistance1": round(float(R1), 2),
"support1": round(float(S1), 2),
"resistance2": round(float(R2), 2),
"support2": round(float(S2), 2),
"resistance3": round(float(R3), 2),
"support3": round(float(S3), 2),
"entry_point": round(float(entry_point), 2),
"stop_loss": round(float(stop_loss), 2),
"target_price": round(float(target_price), 2),
"s1_pect": round(float(s1_pect), 2),
"s2_pect": round(float(s2_pect), 2),
"s3_pect": round(float(s3_pect), 2),
"r1_pect": round(float(r1_pect), 2),
"r2_pect": round(float(r2_pect), 2),
"r3_pect": round(float(r3_pect), 2),
"p1_pect": round(float(p1_pect), 2),
"remarks": remarks
}
# =================== Main: short-term swing ===================
def analysestock(ticker):
now = datetime.datetime.now()
formatted_datetime = now.strftime('%Y-%m-%d %H:%M:%S.%f')
threshold_time = now.replace(hour=17, minute=0, second=0, microsecond=0)
end_date = (now + datetime.timedelta(days=1)).strftime('%Y-%m-%d') if now >= threshold_time else now.strftime('%Y-%m-%d')
stock_data = yf.download(ticker, start="2023-01-01", end=end_date, interval="1d")
stock_data.columns = [col.lower() if isinstance(col, str) else col[0].lower() for col in stock_data.columns]
lasttradingdate = stock_data.index[-1].strftime('%d-%m-%Y')
stockdetail = yf.Ticker(ticker)
company_name = stockdetail.info.get("longName", "Company name not found")
live_price = stockdetail.info["regularMarketPrice"]
price_change = stockdetail.info['regularMarketChange']
percentage_change = stockdetail.info['regularMarketChangePercent']
recentdays = stock_data.tail(30)
ohlc_data = []
for index, row in recentdays.iterrows():
ohlc_data.append({
"x": index.strftime('%Y-%m-%d'),
"y": [round(row['open'], 2), round(row['high'], 2), round(row['low'], 2), round(row['close'], 2)]
})
# TA Strategy signals
rsi_trade_signal = get_rsi_trade_signal(stock_data)
macd_trade_signal = get_macd_trade_signal(stock_data)
ema_trade_signal = get_ema_trade_signal(stock_data)
atr_trade_signal = get_atr_trade_signal(stock_data)
adx_trade_signal = get_adx_trade_signal(stock_data)
fibo_trade_signal = get_fibonacci_trade_signal(stock_data)
priceaction_trade_signal = get_priceaction_trade_signal(stock_data)
bb_trade_signal = get_bollinger_trade_signal(stock_data)
sr_trade_signal = get_support_resistance_signal(stock_data)
final_trade_signal = OrderedDict([
("RSI", rsi_trade_signal['rsi_final_signal']),
("MACD", macd_trade_signal['macd_final_signal']),
("ATR", atr_trade_signal['atr_final_signal']),
("EMA", ema_trade_signal['ema_final_signal']),
("ADX", adx_trade_signal['adx_final_signal']),
("Fibo", fibo_trade_signal['fib_final_signal']),
("BB", bb_trade_signal['bollinger_final_signal']),
("SR", sr_trade_signal['sr_final_signal']),
("PA_MS", priceaction_trade_signal['priceaction_final_signal']),
])
indicator_score = [
rsi_trade_signal["rsi_score"],
macd_trade_signal['macd_score'],
atr_trade_signal['atr_score'],
adx_trade_signal['adx_score'],
ema_trade_signal['ema_score'],
priceaction_trade_signal['priceaction_score'],
bb_trade_signal['bollinger_score'],
fibo_trade_signal['fib_score'],
sr_trade_signal['sr_score']
]
overall_ta_score,overall_ta_signal = calculate_technical_analysis_score(indicator_score)
#FA signals
fundamental_analysis = get_fundamental_details(ticker)
#news
news_payload = get_latest_news_with_sentiment(
company_name,
period="1d",
max_results=10,
language="en",
country="US"
)
#overallscore
overall_fa_score = fundamental_analysis["overall_fa_score"]
overall_news_score = news_payload['overall_news_score']
overall_fa_signal = signal_from_score(overall_fa_score,15)
overall_news_signal = signal_from_score(overall_news_score,5)
combined_overall_score = overall_ta_score + overall_fa_score + overall_news_score
combined_overall_signal = np.where(combined_overall_score > 65, 'Buy',
np.where(combined_overall_score > 50, 'Neutral', 'DBuy'))
#trade recommendation
pivot_levels = calculate_pivot_points(ticker, combined_overall_score, live_price)
#prediiction
forecast_15 = None
try:
forecast_15 = forecast_next_15_high_low(
ticker=ticker,
stock_data=stock_data
)
except Exception as ex:
forecast_15 = {"error": f"{type(ex).__name__}: {ex}"}
# Summaries for 15-day forecast (max high, min low) + range series for charts
max_high_15 = None
max_high_15_date = None
min_low_15 = None
min_low_15_date = None
highlow_range_15 = None
if isinstance(forecast_15, dict) and all(k in forecast_15 for k in ("pred_high", "pred_low", "dates")):
highs = np.asarray(forecast_15["pred_high"], dtype=float)
lows = np.asarray(forecast_15["pred_low"], dtype=float)
dates = forecast_15["dates"]
if highs.size and lows.size and highs.size == lows.size == len(dates):
hi_idx = int(np.nanargmax(highs))
lo_idx = int(np.nanargmin(lows))
max_high_15 = round(float(highs[hi_idx]), 2)
max_high_15_date = dates[hi_idx]
min_low_15 = round(float(lows[lo_idx]), 2)
min_low_15_date = dates[lo_idx]
# Precomputed rangeBar data: [{x: date, y: [low, high]}]
highlow_range_15 = [
{"x": d, "y": [round(float(l), 2), round(float(h), 2)]}
for d, h, l in zip(dates, highs.tolist(), lows.tolist())
]
response = {
"ticker": ticker,
"company_name": company_name,
"lasttradingdate": lasttradingdate,
"currentdatetime": formatted_datetime,
"live_price": round(live_price, 2),
"price_change": round(price_change, 2),
"percentage_change": round(percentage_change, 2),
"ohlc_data":ohlc_data,
"RSI": rsi_trade_signal['rsi_signals'],
"MACD": macd_trade_signal['macd_signals'],
"EMA": ema_trade_signal['ema_signals'],
"ATR": atr_trade_signal['atr_signals'],
"ADX": adx_trade_signal['adx_signals'],
"Fibo": fibo_trade_signal['fib_signals'],
"SR": sr_trade_signal['support_resistance_signals'],
"BB": bb_trade_signal['bollinger_signals'],
"PA_MS": priceaction_trade_signal['priceaction_signals'],
"final_trade_signal": final_trade_signal,
"overall_ta_score": round(overall_ta_score, 2),
"overall_ta_signal": str(overall_ta_signal),
"fundamental_analysis": fundamental_analysis,
"overall_fa_score": overall_fa_score,
"overall_fa_signal": str(overall_fa_signal),
"overall_news_signal": str(overall_news_signal),
"news_overall_score": overall_news_score,
"news": news_payload["items"],
"combined_overall_score": round(combined_overall_score, 2),
"combined_overall_signal": str(combined_overall_signal),
"tradingInfo": pivot_levels,
"RSI 14": rsi_trade_signal['rsi_14_last_2_years'],
"RSI 5": rsi_trade_signal['rsi_5_last_2_years'],
"MA_20": rsi_trade_signal['ma'],
"Close": rsi_trade_signal['close'],
"LowerBB": rsi_trade_signal['lowerbb'],
"UpperBB": rsi_trade_signal['upperbb'],
"MACDLine": macd_trade_signal['macd_line'],
"MACDSignalLine": macd_trade_signal['macd_signal_line'],
"MACDHistogram": macd_trade_signal['macd_histogram'],
"ATRValue": atr_trade_signal['atr_values'],
"EMA 5": ema_trade_signal['EMA_5'],
"EMA 20": ema_trade_signal['EMA_20'],
"EMA 50": ema_trade_signal['EMA_50'],
"ADX_Indicator": adx_trade_signal['ADX_Indicator'],
"PLUS_DI": adx_trade_signal['PLUS_DI'],
"MINUS_DI": adx_trade_signal['MINUS_DI']
}
response.update({
"ai_predicted_daily_high_15": (forecast_15.get("pred_high") if isinstance(forecast_15, dict) and "pred_high" in forecast_15 else None),
"ai_predicted_daily_low_15": (forecast_15.get("pred_low") if isinstance(forecast_15, dict) and "pred_low" in forecast_15 else None),
"ai_predicted_dates_15": (forecast_15.get("dates") if isinstance(forecast_15, dict) and "dates" in forecast_15 else None),
"ai_model_meta_15d": (forecast_15.get("bundle_meta") if isinstance(forecast_15, dict) and "bundle_meta" in forecast_15 else None),
"ai_model_error_15d": (forecast_15.get("error") if isinstance(forecast_15, dict) and "error" in forecast_15 else None),
})
response.update({
"ai_predicted_max_high_15": max_high_15,
"ai_predicted_max_high_15_date": max_high_15_date,
"ai_predicted_min_low_15": min_low_15,
"ai_predicted_min_low_15_date": min_low_15_date,
"ai_predicted_highlow_range_15": highlow_range_15
})
return response