| # RAG Pipeline with OpenRouter GLM Integration | |
| ## π― **Project Overview** | |
| Successfully integrated OpenRouter's GLM-4.5-air model as the primary AI with RAG tool calling capabilities, replacing Google Gemini dependency. | |
| ## β **Completed Features** | |
| ### **1. OpenRouter GLM Integration** | |
| - **Model**: `z-ai/glm-4.5-air:free` via OpenRouter API | |
| - **Intelligent Tool Calling**: GLM automatically decides when to use RAG vs general conversation | |
| - **Fallback Handling**: Graceful degradation when datasets are loading | |
| ### **2. New Chat Endpoint (`/chat`)** | |
| - **Multi-turn Conversations**: Full conversation history support | |
| - **Smart Tool Selection**: AI chooses RAG tool when relevant to user query | |
| - **Response Format**: Returns both AI response and tool execution details | |
| - **Error Handling**: Comprehensive error catching and user-friendly messages | |
| ### **3. RAG Tool Function** | |
| - **Function**: `rag_qa(question, dataset)` | |
| - **Dynamic Dataset Selection**: Supports multiple datasets (developer-portfolio, etc.) | |
| - **Background Loading**: Non-blocking dataset initialization | |
| - **Error Recovery**: Handles missing datasets and pipeline errors | |
| ### **4. Backward Compatibility** | |
| - **Legacy `/answer` endpoint**: Still fully functional | |
| - **Existing API contracts**: No breaking changes | |
| - **Dataset Support**: All existing datasets work unchanged | |
| ### **5. Infrastructure Improvements** | |
| - **Removed Google Gemini**: No more Google API key dependency | |
| - **Comprehensive .gitignore**: Python cache, IDE files, OS files | |
| - **Clean Architecture**: Separated concerns between AI and RAG components | |
| ## π§ͺ **Testing Suite** | |
| ### **Test Coverage** (13 test cases, all passing) | |
| - **Chat Endpoint Tests**: Basic functionality, tool calling, error handling | |
| - **RAG Function Tests**: Loaded pipelines, missing datasets, exceptions | |
| - **Pipeline Tests**: Initialization, preset creation, question answering | |
| - **Tools Tests**: Configuration structure and parameters | |
| - **Legacy Tests**: Backward compatibility verification | |
| ### **Test Quality** | |
| - **Mocking Strategy**: Isolated unit tests without external dependencies | |
| - **Edge Cases**: Error scenarios and boundary conditions | |
| - **Integration Ready**: FastAPI TestClient for endpoint testing | |
| ## π **Usage Examples** | |
| ### **General Chat** | |
| ```bash | |
| curl -X POST "http://localhost:8000/chat" \ | |
| -H "Content-Type: application/json" \ | |
| -d '{"messages": [{"role": "user", "content": "Hello! How are you?"}]}' | |
| ``` | |
| ### **RAG-Powered Questions** | |
| ```bash | |
| curl -X POST "http://localhost:8000/chat" \ | |
| -H "Content-Type: application/json" \ | |
| -d '{"messages": [{"role": "user", "content": "What is your experience as a Tech Lead?"}], "dataset": "developer-portfolio"}' | |
| ``` | |
| ### **Legacy Endpoint** | |
| ```bash | |
| curl -X POST "http://localhost:8000/answer" \ | |
| -H "Content-Type: application/json" \ | |
| -d '{"text": "What is your role?", "dataset": "developer-portfolio"}' | |
| ``` | |
| ## π **Architecture Benefits** | |
| ### **Intelligent AI Assistant** | |
| - **Context Awareness**: Knows when to use RAG vs general knowledge | |
| - **Tool Extensibility**: Easy to add new tools beyond RAG | |
| - **Conversation Memory**: Maintains context across multiple turns | |
| ### **Performance Optimizations** | |
| - **Background Loading**: Datasets load asynchronously after server start | |
| - **Memory Efficient**: Only loads required datasets | |
| - **Fast Response**: Direct AI responses without RAG when not needed | |
| ### **Developer Experience** | |
| - **Clean Dependencies**: No Google API key required | |
| - **Comprehensive Tests**: Full test coverage for confidence | |
| - **Clear Documentation**: Examples and usage patterns | |
| ## π§ **Technical Implementation** | |
| ### **Key Components** | |
| 1. **OpenRouter Client**: GLM-4.5-air model integration | |
| 2. **Tool Calling**: Dynamic function registration and execution | |
| 3. **RAG Pipeline**: Simplified to focus on retrieval and prompting | |
| 4. **FastAPI Application**: Modern async endpoints with proper error handling | |
| ### **Configuration** | |
| - **Environment Variables**: Minimal dependencies (only optional for legacy features) | |
| - **Dataset Configs**: Flexible configuration system for multiple datasets | |
| - **Model Settings**: Easy to update models and parameters | |
| ## π **Summary** | |
| The application now provides a **smart conversational AI** that can: | |
| - β Handle general chat conversations | |
| - β Automatically use RAG when relevant | |
| - β Support multiple datasets and tools | |
| - β Maintain backward compatibility | |
| - β Scale efficiently with background loading | |
| - β Provide comprehensive test coverage | |
| **Ready for production deployment** with full confidence in functionality and reliability. |