File size: 15,836 Bytes
5963ed6
 
bdd3046
028d1d6
 
b390399
028d1d6
 
 
 
 
 
bdd3046
028d1d6
5963ed6
 
028d1d6
5963ed6
e142418
028d1d6
e142418
028d1d6
 
bdd3046
028d1d6
bdd3046
e142418
 
 
 
 
5963ed6
e142418
bdd3046
e142418
 
 
028d1d6
 
bdd3046
028d1d6
bdd3046
028d1d6
 
5963ed6
028d1d6
bdd3046
028d1d6
bdd3046
e142418
5963ed6
 
 
 
 
 
e142418
 
028d1d6
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
028d1d6
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963ed6
e142418
 
 
 
 
5963ed6
 
 
 
 
e142418
5963ed6
 
 
 
 
 
 
 
 
e142418
5963ed6
e142418
 
5963ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
e142418
 
5963ed6
e142418
 
5963ed6
e142418
 
 
5963ed6
e142418
 
5963ed6
e142418
5963ed6
 
 
e142418
5963ed6
 
e142418
 
5963ed6
e142418
 
5963ed6
e142418
 
 
 
 
 
 
5963ed6
 
 
 
e142418
5963ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963ed6
 
 
 
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963ed6
 
 
e142418
 
 
 
5963ed6
e142418
 
 
5963ed6
e142418
 
 
 
5963ed6
 
 
 
 
 
 
e142418
 
 
 
 
 
 
 
5963ed6
e142418
 
5963ed6
 
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963ed6
e142418
 
 
5963ed6
 
 
 
 
 
 
 
 
 
 
 
 
e142418
 
 
 
5963ed6
e142418
 
5963ed6
 
 
 
 
 
e142418
 
 
5963ed6
 
 
 
e142418
5963ed6
e142418
5963ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e142418
 
 
 
 
 
 
 
 
 
 
 
5963ed6
 
 
 
e142418
 
5963ed6
e142418
 
5963ed6
e142418
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# app.py β€” MCP POC using local Hugging Face model (flan-t5 or other) or rule-based fallback.
# Place this file next to config.py. Do NOT store secrets here.

from mcp.server.fastmcp import FastMCP
from typing import Optional, List, Tuple, Any, Dict
import requests
import os
import gradio as gr
import json
import time
import traceback
import inspect
import re

# Optional transformers imports β€” load only if available
TRANSFORMERS_AVAILABLE = False
try:
    from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
    TRANSFORMERS_AVAILABLE = True
except Exception:
    TRANSFORMERS_AVAILABLE = False

# ----------------------------
# Load config
# ----------------------------
try:
    from config import (
        CLIENT_ID,
        CLIENT_SECRET,
        REFRESH_TOKEN,
        API_BASE,
        LOCAL_MODEL,      # e.g. "google/flan-t5-base" or None
    )
except Exception:
    raise SystemExit(
        "Make sure config.py exists with CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE, LOCAL_MODEL (or leave LOCAL_MODEL=None)."
    )

# ----------------------------
# Initialize FastMCP
# ----------------------------
mcp = FastMCP("ZohoCRMAgent")

# ----------------------------
# Analytics / KPI logging (simple local JSON file)
# ----------------------------
ANALYTICS_PATH = "mcp_analytics.json"

def _init_analytics():
    if not os.path.exists(ANALYTICS_PATH):
        base = {
            "tool_calls": {},
            "llm_calls": 0,
            "last_llm_confidence": None,
            "created_at": time.time()
        }
        with open(ANALYTICS_PATH, "w") as f:
            json.dump(base, f, indent=2)

def _log_tool_call(tool_name: str, success: bool = True):
    try:
        with open(ANALYTICS_PATH, "r") as f:
            data = json.load(f)
    except Exception:
        data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
    data["tool_calls"].setdefault(tool_name, {"count": 0, "success": 0, "fail": 0})
    data["tool_calls"][tool_name]["count"] += 1
    if success:
        data["tool_calls"][tool_name]["success"] += 1
    else:
        data["tool_calls"][tool_name]["fail"] += 1
    with open(ANALYTICS_PATH, "w") as f:
        json.dump(data, f, indent=2)

def _log_llm_call(confidence: Optional[float] = None):
    try:
        with open(ANALYTICS_PATH, "r") as f:
            data = json.load(f)
    except Exception:
        data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
    data["llm_calls"] = data.get("llm_calls", 0) + 1
    if confidence is not None:
        data["last_llm_confidence"] = confidence
    with open(ANALYTICS_PATH, "w") as f:
        json.dump(data, f, indent=2)

_init_analytics()

# ----------------------------
# Local LLM pipeline initialization
# ----------------------------
LLM_PIPELINE = None
TOKENIZER = None

def init_local_model():
    """
    Initialize local HF model pipeline depending on LOCAL_MODEL.
    Supports seq2seq (flan/t5) and causal models.
    If transformers is unavailable or LOCAL_MODEL is None, leaves LLM_PIPELINE as None.
    """
    global LLM_PIPELINE, TOKENIZER

    if not LOCAL_MODEL:
        print("LOCAL_MODEL is None β€” using rule-based fallback.")
        LLM_PIPELINE = None
        return

    if not TRANSFORMERS_AVAILABLE:
        print("transformers not installed β€” using rule-based fallback.")
        LLM_PIPELINE = None
        return

    try:
        tokenizer_name = LOCAL_TOKENIZER or LOCAL_MODEL

        # Detect seq2seq family (T5/Flan)
        if any(x in LOCAL_MODEL.lower() for x in ["flan", "t5", "seq2seq"]):
            TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
            model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL)
            LLM_PIPELINE = pipeline("text2text-generation", model=model, tokenizer=TOKENIZER)
            print(f"Loaded seq2seq model pipeline for {LOCAL_MODEL}")
        else:
            # causal model path
            TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
            model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL)
            LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
            print(f"Loaded causal model pipeline for {LOCAL_MODEL}")

    except Exception as e:
        print("Failed to load local model:", e)
        traceback.print_exc()
        LLM_PIPELINE = None

# Try to init model at startup (may be slow)
init_local_model()

# ----------------------------
# Rule-based fallback responder
# ----------------------------
def rule_based_response(message: str) -> str:
    msg = (message or "").strip().lower()
    if msg.startswith("create record") or msg.startswith("create contact"):
        return "To create a record, use the command: create_record MODULE_NAME {\"Field\": \"value\"}"
    if msg.startswith("create_invoice"):
        return "To create invoice: create_invoice {\"customer_id\": \"...\", \"line_items\": [...]} (JSON)"
    if msg.startswith("help") or msg.startswith("what can you do"):
        return "I can create/update/delete records in Zoho (create_record/update_record/delete_record) or process local files by pasting their path (/mnt/data/...)."
    return "(fallback) No local LLM loaded. Use explicit commands like `create_record` or paste a /mnt/data/ path."

# ----------------------------
# Zoho token refresh & headers helper
# ----------------------------
def _get_valid_token_headers() -> dict:
    # Note: region-specific account host may need .com or .eu β€” ensure API_BASE matches services used.
    token_url = "https://accounts.zoho.in/oauth/v2/token"
    params = {
        "refresh_token": REFRESH_TOKEN,
        "client_id": CLIENT_ID,
        "client_secret": CLIENT_SECRET,
        "grant_type": "refresh_token"
    }
    r = requests.post(token_url, params=params, timeout=20)
    if r.status_code == 200:
        t = r.json().get("access_token")
        return {"Authorization": f"Zoho-oauthtoken {t}"}
    else:
        raise RuntimeError(f"Failed to refresh Zoho token: {r.status_code} {r.text}")

# ----------------------------
# MCP tools: Zoho CRM & Books (CRUD + document processing)
# ----------------------------
@mcp.tool()
def authenticate_zoho() -> str:
    try:
        _ = _get_valid_token_headers()
        _log_tool_call("authenticate_zoho", True)
        return "Zoho token refreshed (ok)."
    except Exception as e:
        _log_tool_call("authenticate_zoho", False)
        return f"Failed to authenticate: {e}"

@mcp.tool()
def create_record(module_name: str, record_data: dict) -> str:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}"
        payload = {"data": [record_data]}
        r = requests.post(url, headers=headers, json=payload, timeout=20)
        if r.status_code in (200, 201):
            _log_tool_call("create_record", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("create_record", False)
        return f"Error creating record: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("create_record", False)
        return f"Exception: {e}"

@mcp.tool()
def get_records(module_name: str, page: int = 1, per_page: int = 200) -> list:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}"
        r = requests.get(url, headers=headers, params={"page": page, "per_page": per_page}, timeout=20)
        if r.status_code == 200:
            _log_tool_call("get_records", True)
            return r.json().get("data", [])
        _log_tool_call("get_records", False)
        return [f"Error retrieving {module_name}: {r.status_code} {r.text}"]
    except Exception as e:
        _log_tool_call("get_records", False)
        return [f"Exception: {e}"]

@mcp.tool()
def update_record(module_name: str, record_id: str, data: dict) -> str:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}/{record_id}"
        payload = {"data": [data]}
        r = requests.put(url, headers=headers, json=payload, timeout=20)
        if r.status_code == 200:
            _log_tool_call("update_record", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("update_record", False)
        return f"Error updating: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("update_record", False)
        return f"Exception: {e}"

@mcp.tool()
def delete_record(module_name: str, record_id: str) -> str:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}/{record_id}"
        r = requests.delete(url, headers=headers, timeout=20)
        if r.status_code == 200:
            _log_tool_call("delete_record", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("delete_record", False)
        return f"Error deleting: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("delete_record", False)
        return f"Exception: {e}"

@mcp.tool()
def create_invoice(data: dict) -> str:
    """
    Creates an invoice in Zoho Books.
    NOTE: Ensure API_BASE points to the Books base (e.g. https://books.zoho.in/api/v3) when calling invoices.
    """
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/invoices"
        r = requests.post(url, headers=headers, json={"data": [data]}, timeout=20)
        if r.status_code in (200, 201):
            _log_tool_call("create_invoice", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("create_invoice", False)
        return f"Error creating invoice: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("create_invoice", False)
        return f"Exception: {e}"

@mcp.tool()
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
    """
    Process an uploaded file path (local path or URL). Per developer instruction,
    we accept local paths like '/mnt/data/script_zoho_mcp' and return a file:// URL.
    Replace the placeholder OCR block with your real OCR pipeline when ready.
    """
    try:
        if os.path.exists(file_path):
            file_url = f"file://{file_path}"
            # Placeholder extraction β€” replace with OCR + parsing logic
            extracted = {
                "Name": "ACME Corp (simulated)",
                "Email": "[email protected]",
                "Phone": "+91-99999-00000",
                "Total": "1234.00",
                "Confidence": 0.88
            }
            _log_tool_call("process_document", True)
            return {
                "status": "success",
                "file": os.path.basename(file_path),
                "file_url": file_url,
                "target_module": target_module,
                "extracted_data": extracted
            }
        else:
            _log_tool_call("process_document", False)
            return {"status": "error", "error": "file not found", "file_path": file_path}
    except Exception as e:
        _log_tool_call("process_document", False)
        return {"status": "error", "error": str(e)}

# ----------------------------
# Simple local command parser to call tools explicitly from chat (POC)
# ----------------------------
def try_parse_and_invoke_command(text: str):
    """
    Very small parser for explicit chat commands:
      create_record MODULE {json}
      create_invoice {json}
      process_document /mnt/data/...
    """
    text = text.strip()
    # create_record
    m = re.match(r"^create_record\s+(\w+)\s+(.+)$", text, re.I)
    if m:
        module = m.group(1)
        body = m.group(2)
        try:
            record_data = json.loads(body)
        except Exception:
            return "Invalid JSON for record_data"
        return create_record(module, record_data)

    # create_invoice
    m = re.match(r"^create_invoice\s+(.+)$", text, re.I)
    if m:
        body = m.group(1)
        try:
            invoice_data = json.loads(body)
        except Exception:
            return "Invalid JSON for invoice_data"
        return create_invoice(invoice_data)

    # process_document via local path
    m = re.match(r"^(\/mnt\/data\/\S+)$", text)
    if m:
        path = m.group(1)
        return process_document(path)

    return None

# ----------------------------
# Local LLM / fallback generator
# ----------------------------
def local_llm_generate(prompt: str) -> str:
    if LLM_PIPELINE is not None:
        try:
            # For seq2seq (text2text) the pipeline returns 'generated_text'
            out = LLM_PIPELINE(prompt, max_new_tokens=256)
            if isinstance(out, list) and len(out) > 0:
                # text2text pipelines often provide 'generated_text'
                if isinstance(out[0], dict):
                    return out[0].get("generated_text") or out[0].get("text") or str(out[0])
                return str(out[0])
            return str(out)
        except Exception as e:
            print("LLM pipeline error:", e)
            traceback.print_exc()
            return rule_based_response(prompt)
    else:
        return rule_based_response(prompt)

# ----------------------------
# Gradio chat handler (accepts message, history)
# ----------------------------
def chat_handler(message, history):
    """
    Gradio ChatInterface calls this with (message, history).
    If the message is a local file path (starting with /mnt/data/), we pass it unchanged
    to process_document() β€” this satisfies the developer instruction to send the path as the URL.
    Otherwise, try explicit commands, then local LLM fallback.
    """
    history = history or []
    trimmed = (message or "").strip()

    # 1) explicit commands
    cmd = try_parse_and_invoke_command(trimmed)
    if cmd is not None:
        return cmd

    # 2) developer convenience: local path handling
    if trimmed.startswith("/mnt/data/"):
        try:
            doc = process_document(trimmed)
            return f"Processed file {doc.get('file')}. Extracted: {json.dumps(doc.get('extracted_data'), ensure_ascii=False)}"
        except Exception as e:
            return f"Error processing document: {e}"

    # 3) otherwise call local LLM (if available) or fallback
    # build a compact prompt including a short system instruction and history
    history_text = ""
    for pair in history:
        try:
            user_turn, assistant_turn = pair[0], pair[1]
        except Exception:
            if isinstance(pair, dict):
                user_turn = pair.get("user", "")
                assistant_turn = pair.get("assistant", "")
            else:
                user_turn, assistant_turn = "", ""
        if user_turn:
            history_text += f"User: {user_turn}\n"
        if assistant_turn:
            history_text += f"Assistant: {assistant_turn}\n"

    system = "You are a Zoho assistant that can call local MCP tools when asked. Keep replies short and actionable."
    prompt = f"{system}\n{history_text}\nUser: {trimmed}\nAssistant:"
    try:
        resp = local_llm_generate(prompt)
        _log_llm_call(None)
        return resp
    except Exception as e:
        return f"LLM error: {e}"

# ----------------------------
# Gradio UI
# ----------------------------
def chat_interface():
    return gr.ChatInterface(
        fn=chat_handler,
        textbox=gr.Textbox(placeholder="Ask me to create contacts, invoices, or paste /mnt/data/... for dev.")
    )

# ----------------------------
# Entrypoint
# ----------------------------
if __name__ == "__main__":
    print("[startup] Launching Gradio UI + FastMCP server (local LLM mode).")
    demo = chat_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860)