Spaces:
Runtime error
Runtime error
File size: 15,836 Bytes
5963ed6 bdd3046 028d1d6 b390399 028d1d6 bdd3046 028d1d6 5963ed6 028d1d6 5963ed6 e142418 028d1d6 e142418 028d1d6 bdd3046 028d1d6 bdd3046 e142418 5963ed6 e142418 bdd3046 e142418 028d1d6 bdd3046 028d1d6 bdd3046 028d1d6 5963ed6 028d1d6 bdd3046 028d1d6 bdd3046 e142418 5963ed6 e142418 028d1d6 e142418 028d1d6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 5963ed6 e142418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# app.py β MCP POC using local Hugging Face model (flan-t5 or other) or rule-based fallback.
# Place this file next to config.py. Do NOT store secrets here.
from mcp.server.fastmcp import FastMCP
from typing import Optional, List, Tuple, Any, Dict
import requests
import os
import gradio as gr
import json
import time
import traceback
import inspect
import re
# Optional transformers imports β load only if available
TRANSFORMERS_AVAILABLE = False
try:
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
TRANSFORMERS_AVAILABLE = True
except Exception:
TRANSFORMERS_AVAILABLE = False
# ----------------------------
# Load config
# ----------------------------
try:
from config import (
CLIENT_ID,
CLIENT_SECRET,
REFRESH_TOKEN,
API_BASE,
LOCAL_MODEL, # e.g. "google/flan-t5-base" or None
)
except Exception:
raise SystemExit(
"Make sure config.py exists with CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE, LOCAL_MODEL (or leave LOCAL_MODEL=None)."
)
# ----------------------------
# Initialize FastMCP
# ----------------------------
mcp = FastMCP("ZohoCRMAgent")
# ----------------------------
# Analytics / KPI logging (simple local JSON file)
# ----------------------------
ANALYTICS_PATH = "mcp_analytics.json"
def _init_analytics():
if not os.path.exists(ANALYTICS_PATH):
base = {
"tool_calls": {},
"llm_calls": 0,
"last_llm_confidence": None,
"created_at": time.time()
}
with open(ANALYTICS_PATH, "w") as f:
json.dump(base, f, indent=2)
def _log_tool_call(tool_name: str, success: bool = True):
try:
with open(ANALYTICS_PATH, "r") as f:
data = json.load(f)
except Exception:
data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
data["tool_calls"].setdefault(tool_name, {"count": 0, "success": 0, "fail": 0})
data["tool_calls"][tool_name]["count"] += 1
if success:
data["tool_calls"][tool_name]["success"] += 1
else:
data["tool_calls"][tool_name]["fail"] += 1
with open(ANALYTICS_PATH, "w") as f:
json.dump(data, f, indent=2)
def _log_llm_call(confidence: Optional[float] = None):
try:
with open(ANALYTICS_PATH, "r") as f:
data = json.load(f)
except Exception:
data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
data["llm_calls"] = data.get("llm_calls", 0) + 1
if confidence is not None:
data["last_llm_confidence"] = confidence
with open(ANALYTICS_PATH, "w") as f:
json.dump(data, f, indent=2)
_init_analytics()
# ----------------------------
# Local LLM pipeline initialization
# ----------------------------
LLM_PIPELINE = None
TOKENIZER = None
def init_local_model():
"""
Initialize local HF model pipeline depending on LOCAL_MODEL.
Supports seq2seq (flan/t5) and causal models.
If transformers is unavailable or LOCAL_MODEL is None, leaves LLM_PIPELINE as None.
"""
global LLM_PIPELINE, TOKENIZER
if not LOCAL_MODEL:
print("LOCAL_MODEL is None β using rule-based fallback.")
LLM_PIPELINE = None
return
if not TRANSFORMERS_AVAILABLE:
print("transformers not installed β using rule-based fallback.")
LLM_PIPELINE = None
return
try:
tokenizer_name = LOCAL_TOKENIZER or LOCAL_MODEL
# Detect seq2seq family (T5/Flan)
if any(x in LOCAL_MODEL.lower() for x in ["flan", "t5", "seq2seq"]):
TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL)
LLM_PIPELINE = pipeline("text2text-generation", model=model, tokenizer=TOKENIZER)
print(f"Loaded seq2seq model pipeline for {LOCAL_MODEL}")
else:
# causal model path
TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL)
LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
print(f"Loaded causal model pipeline for {LOCAL_MODEL}")
except Exception as e:
print("Failed to load local model:", e)
traceback.print_exc()
LLM_PIPELINE = None
# Try to init model at startup (may be slow)
init_local_model()
# ----------------------------
# Rule-based fallback responder
# ----------------------------
def rule_based_response(message: str) -> str:
msg = (message or "").strip().lower()
if msg.startswith("create record") or msg.startswith("create contact"):
return "To create a record, use the command: create_record MODULE_NAME {\"Field\": \"value\"}"
if msg.startswith("create_invoice"):
return "To create invoice: create_invoice {\"customer_id\": \"...\", \"line_items\": [...]} (JSON)"
if msg.startswith("help") or msg.startswith("what can you do"):
return "I can create/update/delete records in Zoho (create_record/update_record/delete_record) or process local files by pasting their path (/mnt/data/...)."
return "(fallback) No local LLM loaded. Use explicit commands like `create_record` or paste a /mnt/data/ path."
# ----------------------------
# Zoho token refresh & headers helper
# ----------------------------
def _get_valid_token_headers() -> dict:
# Note: region-specific account host may need .com or .eu β ensure API_BASE matches services used.
token_url = "https://accounts.zoho.in/oauth/v2/token"
params = {
"refresh_token": REFRESH_TOKEN,
"client_id": CLIENT_ID,
"client_secret": CLIENT_SECRET,
"grant_type": "refresh_token"
}
r = requests.post(token_url, params=params, timeout=20)
if r.status_code == 200:
t = r.json().get("access_token")
return {"Authorization": f"Zoho-oauthtoken {t}"}
else:
raise RuntimeError(f"Failed to refresh Zoho token: {r.status_code} {r.text}")
# ----------------------------
# MCP tools: Zoho CRM & Books (CRUD + document processing)
# ----------------------------
@mcp.tool()
def authenticate_zoho() -> str:
try:
_ = _get_valid_token_headers()
_log_tool_call("authenticate_zoho", True)
return "Zoho token refreshed (ok)."
except Exception as e:
_log_tool_call("authenticate_zoho", False)
return f"Failed to authenticate: {e}"
@mcp.tool()
def create_record(module_name: str, record_data: dict) -> str:
try:
headers = _get_valid_token_headers()
url = f"{API_BASE}/{module_name}"
payload = {"data": [record_data]}
r = requests.post(url, headers=headers, json=payload, timeout=20)
if r.status_code in (200, 201):
_log_tool_call("create_record", True)
return json.dumps(r.json(), ensure_ascii=False)
_log_tool_call("create_record", False)
return f"Error creating record: {r.status_code} {r.text}"
except Exception as e:
_log_tool_call("create_record", False)
return f"Exception: {e}"
@mcp.tool()
def get_records(module_name: str, page: int = 1, per_page: int = 200) -> list:
try:
headers = _get_valid_token_headers()
url = f"{API_BASE}/{module_name}"
r = requests.get(url, headers=headers, params={"page": page, "per_page": per_page}, timeout=20)
if r.status_code == 200:
_log_tool_call("get_records", True)
return r.json().get("data", [])
_log_tool_call("get_records", False)
return [f"Error retrieving {module_name}: {r.status_code} {r.text}"]
except Exception as e:
_log_tool_call("get_records", False)
return [f"Exception: {e}"]
@mcp.tool()
def update_record(module_name: str, record_id: str, data: dict) -> str:
try:
headers = _get_valid_token_headers()
url = f"{API_BASE}/{module_name}/{record_id}"
payload = {"data": [data]}
r = requests.put(url, headers=headers, json=payload, timeout=20)
if r.status_code == 200:
_log_tool_call("update_record", True)
return json.dumps(r.json(), ensure_ascii=False)
_log_tool_call("update_record", False)
return f"Error updating: {r.status_code} {r.text}"
except Exception as e:
_log_tool_call("update_record", False)
return f"Exception: {e}"
@mcp.tool()
def delete_record(module_name: str, record_id: str) -> str:
try:
headers = _get_valid_token_headers()
url = f"{API_BASE}/{module_name}/{record_id}"
r = requests.delete(url, headers=headers, timeout=20)
if r.status_code == 200:
_log_tool_call("delete_record", True)
return json.dumps(r.json(), ensure_ascii=False)
_log_tool_call("delete_record", False)
return f"Error deleting: {r.status_code} {r.text}"
except Exception as e:
_log_tool_call("delete_record", False)
return f"Exception: {e}"
@mcp.tool()
def create_invoice(data: dict) -> str:
"""
Creates an invoice in Zoho Books.
NOTE: Ensure API_BASE points to the Books base (e.g. https://books.zoho.in/api/v3) when calling invoices.
"""
try:
headers = _get_valid_token_headers()
url = f"{API_BASE}/invoices"
r = requests.post(url, headers=headers, json={"data": [data]}, timeout=20)
if r.status_code in (200, 201):
_log_tool_call("create_invoice", True)
return json.dumps(r.json(), ensure_ascii=False)
_log_tool_call("create_invoice", False)
return f"Error creating invoice: {r.status_code} {r.text}"
except Exception as e:
_log_tool_call("create_invoice", False)
return f"Exception: {e}"
@mcp.tool()
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
"""
Process an uploaded file path (local path or URL). Per developer instruction,
we accept local paths like '/mnt/data/script_zoho_mcp' and return a file:// URL.
Replace the placeholder OCR block with your real OCR pipeline when ready.
"""
try:
if os.path.exists(file_path):
file_url = f"file://{file_path}"
# Placeholder extraction β replace with OCR + parsing logic
extracted = {
"Name": "ACME Corp (simulated)",
"Email": "[email protected]",
"Phone": "+91-99999-00000",
"Total": "1234.00",
"Confidence": 0.88
}
_log_tool_call("process_document", True)
return {
"status": "success",
"file": os.path.basename(file_path),
"file_url": file_url,
"target_module": target_module,
"extracted_data": extracted
}
else:
_log_tool_call("process_document", False)
return {"status": "error", "error": "file not found", "file_path": file_path}
except Exception as e:
_log_tool_call("process_document", False)
return {"status": "error", "error": str(e)}
# ----------------------------
# Simple local command parser to call tools explicitly from chat (POC)
# ----------------------------
def try_parse_and_invoke_command(text: str):
"""
Very small parser for explicit chat commands:
create_record MODULE {json}
create_invoice {json}
process_document /mnt/data/...
"""
text = text.strip()
# create_record
m = re.match(r"^create_record\s+(\w+)\s+(.+)$", text, re.I)
if m:
module = m.group(1)
body = m.group(2)
try:
record_data = json.loads(body)
except Exception:
return "Invalid JSON for record_data"
return create_record(module, record_data)
# create_invoice
m = re.match(r"^create_invoice\s+(.+)$", text, re.I)
if m:
body = m.group(1)
try:
invoice_data = json.loads(body)
except Exception:
return "Invalid JSON for invoice_data"
return create_invoice(invoice_data)
# process_document via local path
m = re.match(r"^(\/mnt\/data\/\S+)$", text)
if m:
path = m.group(1)
return process_document(path)
return None
# ----------------------------
# Local LLM / fallback generator
# ----------------------------
def local_llm_generate(prompt: str) -> str:
if LLM_PIPELINE is not None:
try:
# For seq2seq (text2text) the pipeline returns 'generated_text'
out = LLM_PIPELINE(prompt, max_new_tokens=256)
if isinstance(out, list) and len(out) > 0:
# text2text pipelines often provide 'generated_text'
if isinstance(out[0], dict):
return out[0].get("generated_text") or out[0].get("text") or str(out[0])
return str(out[0])
return str(out)
except Exception as e:
print("LLM pipeline error:", e)
traceback.print_exc()
return rule_based_response(prompt)
else:
return rule_based_response(prompt)
# ----------------------------
# Gradio chat handler (accepts message, history)
# ----------------------------
def chat_handler(message, history):
"""
Gradio ChatInterface calls this with (message, history).
If the message is a local file path (starting with /mnt/data/), we pass it unchanged
to process_document() β this satisfies the developer instruction to send the path as the URL.
Otherwise, try explicit commands, then local LLM fallback.
"""
history = history or []
trimmed = (message or "").strip()
# 1) explicit commands
cmd = try_parse_and_invoke_command(trimmed)
if cmd is not None:
return cmd
# 2) developer convenience: local path handling
if trimmed.startswith("/mnt/data/"):
try:
doc = process_document(trimmed)
return f"Processed file {doc.get('file')}. Extracted: {json.dumps(doc.get('extracted_data'), ensure_ascii=False)}"
except Exception as e:
return f"Error processing document: {e}"
# 3) otherwise call local LLM (if available) or fallback
# build a compact prompt including a short system instruction and history
history_text = ""
for pair in history:
try:
user_turn, assistant_turn = pair[0], pair[1]
except Exception:
if isinstance(pair, dict):
user_turn = pair.get("user", "")
assistant_turn = pair.get("assistant", "")
else:
user_turn, assistant_turn = "", ""
if user_turn:
history_text += f"User: {user_turn}\n"
if assistant_turn:
history_text += f"Assistant: {assistant_turn}\n"
system = "You are a Zoho assistant that can call local MCP tools when asked. Keep replies short and actionable."
prompt = f"{system}\n{history_text}\nUser: {trimmed}\nAssistant:"
try:
resp = local_llm_generate(prompt)
_log_llm_call(None)
return resp
except Exception as e:
return f"LLM error: {e}"
# ----------------------------
# Gradio UI
# ----------------------------
def chat_interface():
return gr.ChatInterface(
fn=chat_handler,
textbox=gr.Textbox(placeholder="Ask me to create contacts, invoices, or paste /mnt/data/... for dev.")
)
# ----------------------------
# Entrypoint
# ----------------------------
if __name__ == "__main__":
print("[startup] Launching Gradio UI + FastMCP server (local LLM mode).")
demo = chat_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)
|