File size: 20,723 Bytes
759a82d
 
bfbe388
 
 
 
 
 
 
 
 
 
 
bdd3046
028d1d6
 
b390399
028d1d6
 
 
 
 
 
bdd3046
759a82d
9c8efa2
 
759a82d
 
 
 
 
 
 
 
 
 
 
 
 
028d1d6
 
bdd3046
028d1d6
bdd3046
e142418
 
 
 
 
bfbe388
e142418
759a82d
e142418
759a82d
e142418
028d1d6
9c8efa2
 
 
 
 
 
028d1d6
759a82d
028d1d6
bdd3046
028d1d6
 
5963ed6
028d1d6
bdd3046
028d1d6
bdd3046
e142418
759a82d
e142418
 
028d1d6
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
028d1d6
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
9c8efa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e142418
bfbe388
e142418
759a82d
 
 
e142418
bfbe388
 
 
 
 
 
 
 
 
 
 
 
 
 
759a82d
5963ed6
759a82d
bfbe388
 
5963ed6
759a82d
d1fb6bf
759a82d
 
 
 
 
 
 
 
 
5963ed6
d1fb6bf
bfbe388
 
 
 
 
759a82d
 
 
bfbe388
 
 
 
 
 
 
759a82d
bfbe388
759a82d
bfbe388
 
 
 
 
 
759a82d
bfbe388
759a82d
d1fb6bf
759a82d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963ed6
759a82d
 
 
 
 
 
 
 
 
5963ed6
e142418
759a82d
 
 
 
 
 
9c8efa2
 
759a82d
 
5963ed6
759a82d
 
 
 
 
 
 
e142418
 
759a82d
e142418
 
 
759a82d
5963ed6
 
 
 
e142418
5963ed6
 
 
 
 
 
 
 
 
 
 
e142418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759a82d
 
 
e142418
 
 
 
 
 
 
5963ed6
e142418
 
 
 
759a82d
e142418
 
 
 
 
 
 
 
759a82d
e142418
 
 
 
 
759a82d
 
 
e142418
 
 
 
759a82d
 
e142418
 
 
759a82d
e142418
 
 
759a82d
e142418
759a82d
d1fb6bf
759a82d
 
 
 
 
 
 
 
 
 
 
 
9c8efa2
759a82d
 
 
 
 
 
9c8efa2
 
759a82d
 
 
 
 
 
 
 
 
 
 
e142418
 
d1fb6bf
e142418
 
 
 
 
759a82d
5963ed6
 
 
e142418
759a82d
e142418
5963ed6
 
 
 
 
 
759a82d
 
 
 
 
 
 
e142418
 
 
 
 
759a82d
e142418
 
5963ed6
e142418
 
759a82d
e142418
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# app.py — MCP server using DeepSeek via Hugging Face transformers (or fallback)
# - Put this file next to config.py (see example below)
# - Supports LOCAL_MODEL values like:
#     "deepseek/deepseek-r1-0528" or "deepseek/deepseek-r1-0528:free"
#   If a ":revision" suffix is present, it will be passed as the `revision=` argument
#   to transformers.from_pretrained so HF validation is satisfied.
#
# - It loads the model via transformers.pipeline if available; otherwise falls back
#   to google/flan-t5-small or rule-based responder.
#
# - Developer instruction: when a user pastes a local path (e.g. /mnt/data/...), the
#   chat handler passes the path unchanged to process_document(); tool invocation
#   normalization converts file_path -> file_url (file://...) and optionally file_b64.

from mcp.server.fastmcp import FastMCP
from typing import Optional, List, Tuple, Any, Dict
import requests
import os
import gradio as gr
import json
import time
import traceback
import inspect
import re
import logging
import base64
import tempfile

# Setup simple logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("mcp_deepseek")

# Optional transformers imports — will attempt; we handle missing gracefully
TRANSFORMERS_AVAILABLE = False
try:
    from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
    TRANSFORMERS_AVAILABLE = True
except Exception as e:
    logger.warning("transformers not available: %s", e)
    TRANSFORMERS_AVAILABLE = False

# ----------------------------
# Load config
# ----------------------------
try:
    from config import (
        CLIENT_ID,
        CLIENT_SECRET,
        REFRESH_TOKEN,
        API_BASE,
        LOCAL_MODEL,      # e.g. "deepseek/deepseek-r1-7b" or "deepseek/deepseek-r1-0528:free"
    )
except Exception as e:
    raise SystemExit(
        "Make sure config.py exists with CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE, LOCAL_MODEL (or set LOCAL_MODEL=None)."
    )

# Safe defaults for optional config values (prevents NameError)
LOCAL_TOKENIZER = globals().get("LOCAL_TOKENIZER", None)
OPENROUTER_BASE_URL = globals().get("OPENROUTER_BASE_URL", None)
OPENROUTER_API_KEY = globals().get("OPENROUTER_API_KEY", None)
OPENROUTER_MODEL = globals().get("OPENROUTER_MODEL", None)

# ----------------------------
# FastMCP init
# ----------------------------
mcp = FastMCP("ZohoCRMAgent")

# ----------------------------
# Analytics / KPI logging (simple local JSON file)
# ----------------------------
ANALYTICS_PATH = "mcp_analytics.json"

def _init_analytics():
    if not os.path.exists(ANALYTICS_PATH):
        base = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None, "created_at": time.time()}
        with open(ANALYTICS_PATH, "w") as f:
            json.dump(base, f, indent=2)

def _log_tool_call(tool_name: str, success: bool = True):
    try:
        with open(ANALYTICS_PATH, "r") as f:
            data = json.load(f)
    except Exception:
        data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
    data["tool_calls"].setdefault(tool_name, {"count": 0, "success": 0, "fail": 0})
    data["tool_calls"][tool_name]["count"] += 1
    if success:
        data["tool_calls"][tool_name]["success"] += 1
    else:
        data["tool_calls"][tool_name]["fail"] += 1
    with open(ANALYTICS_PATH, "w") as f:
        json.dump(data, f, indent=2)

def _log_llm_call(confidence: Optional[float] = None):
    try:
        with open(ANALYTICS_PATH, "r") as f:
            data = json.load(f)
    except Exception:
        data = {"tool_calls": {}, "llm_calls": 0, "last_llm_confidence": None}
    data["llm_calls"] = data.get("llm_calls", 0) + 1
    if confidence is not None:
        data["last_llm_confidence"] = confidence
    with open(ANALYTICS_PATH, "w") as f:
        json.dump(data, f, indent=2)

_init_analytics()

# ----------------------------
# Helper: normalize local file_path args
# ----------------------------
def _normalize_local_path_args(args: Any) -> Any:
    """
    If args is a dict containing 'file_path' that points to a local file (starting with /mnt/data/),
    add file_url: file://<path> and file_b64: <base64> (optional) so tools can use either.
    Returns modified args (same object or new).
    """
    if not isinstance(args, dict):
        return args
    fp = args.get("file_path")
    if isinstance(fp, str) and fp.startswith("/mnt/data/") and os.path.exists(fp):
        try:
            args["file_url"] = f"file://{fp}"
            # include base64 payload for tools that prefer raw bytes
            try:
                with open(fp, "rb") as f:
                    args["file_b64"] = base64.b64encode(f.read()).decode("utf-8")
            except Exception as e:
                # If reading fails, still include file_url
                logger.warning("Could not read file for base64 embedding: %s", e)
                args.pop("file_b64", None)
        except Exception as e:
            logger.warning("Normalization error for file_path %s: %s", fp, e)
    return args

# ----------------------------
# DeepSeek / HF model loader (with revision parsing)
# ----------------------------
LLM_PIPELINE = None
TOKENIZER = None
LOADED_MODEL_NAME = None

def _parse_model_and_revision(model_string: str) -> Tuple[str, Optional[str]]:
    """
    Accepts model strings like:
      - 'owner/repo'
      - 'owner/repo:revision'
    Returns (repo_id, revision_or_none).
    """
    if ":" in model_string:
        repo_id, revision = model_string.split(":", 1)
        repo_id = repo_id.strip()
        revision = revision.strip()
        return repo_id, revision
    return model_string, None

def init_deepseek_model():
    """
    Try to load LOCAL_MODEL via transformers.pipeline.
    If a ':revision' is present, pass revision=... to from_pretrained to avoid HF repo-id validation errors.
    If loading fails, try a fallback small model (flan-t5-small or distilgpt2).
    """
    global LLM_PIPELINE, TOKENIZER, LOADED_MODEL_NAME

    if not LOCAL_MODEL:
        logger.info("LOCAL_MODEL is None — no local LLM will be used.")
        LLM_PIPELINE = None
        return

    if not TRANSFORMERS_AVAILABLE:
        logger.warning("transformers not installed; cannot load DeepSeek. Falling back to rule-based.")
        LLM_PIPELINE = None
        return

    try:
        model_string = LOCAL_MODEL
        repo_id, revision = _parse_model_and_revision(model_string)
        tokenizer_name = LOCAL_TOKENIZER or repo_id
        model_name_for_logging = f"{repo_id}" + (f" (rev={revision})" if revision else "")
        LOADED_MODEL_NAME = model_name_for_logging

        # If model looks like seq2seq (T5/flan) use text2text; else causal
        seq2seq_keywords = ["flan", "t5", "seq2seq"]
        if any(k in repo_id.lower() for k in seq2seq_keywords):
            if revision:
                TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True, revision=revision)
                model = AutoModelForSeq2SeqLM.from_pretrained(repo_id, revision=revision)
            else:
                TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
                model = AutoModelForSeq2SeqLM.from_pretrained(repo_id)
            LLM_PIPELINE = pipeline("text2text-generation", model=model, tokenizer=TOKENIZER)
            logger.info("Loaded seq2seq model: %s", model_name_for_logging)
        else:
            if revision:
                TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True, revision=revision)
                model = AutoModelForCausalLM.from_pretrained(repo_id, revision=revision)
            else:
                TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
                model = AutoModelForCausalLM.from_pretrained(repo_id)
            LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
            logger.info("Loaded causal model: %s", model_name_for_logging)

    except Exception as e:
        logger.error("Failed to load requested model '%s': %s", LOCAL_MODEL, e)
        traceback.print_exc()
        # Try a small CPU-friendly fallback
        try:
            fallback = "google/flan-t5-small"
            if "flan" in fallback:
                TOKENIZER = AutoTokenizer.from_pretrained(fallback, use_fast=True)
                model = AutoModelForSeq2SeqLM.from_pretrained(fallback)
                LLM_PIPELINE = pipeline("text2text-generation", model=model, tokenizer=TOKENIZER)
            else:
                TOKENIZER = AutoTokenizer.from_pretrained("distilgpt2", use_fast=True)
                model = AutoModelForCausalLM.from_pretrained("distilgpt2")
                LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
            LOADED_MODEL_NAME = fallback
            logger.info("Loaded fallback model: %s", fallback)
        except Exception as e2:
            logger.error("Fallback model also failed: %s", e2)
            traceback.print_exc()
            LLM_PIPELINE = None
            LOADED_MODEL_NAME = None

# Initialize model at startup (may take time)
init_deepseek_model()

# ----------------------------
# Rule-based fallback responder
# ----------------------------
def rule_based_response(message: str) -> str:
    msg = (message or "").strip().lower()
    if msg.startswith("create record") or msg.startswith("create contact"):
        return "To create a record, use: create_record MODULE_NAME {\"Field\":\"value\"}"
    if msg.startswith("create_invoice"):
        return "To create invoice: create_invoice {\"customer_id\":\"...\",\"line_items\":[...]} (JSON)"
    if msg.startswith("help") or "what can you do" in msg:
        return "I can run create_record/update_record/delete_record or process local files by pasting their /mnt/data/ path."
    return "(fallback) No local LLM loaded. Use explicit commands like create_record or paste /mnt/data/ path."

# ----------------------------
# LLM wrapper that returns text + confidence (best-effort)
# ----------------------------
def deepseek_generate(prompt: str, max_tokens: int = 256) -> Dict[str, Any]:
    """
    Generate using the loaded pipeline. Returns {'text': str, 'confidence': Optional[float], 'raw': resp}
    """
    if LLM_PIPELINE is None:
        return {"text": rule_based_response(prompt), "confidence": None, "raw": None}

    try:
        out = LLM_PIPELINE(prompt, max_new_tokens=max_tokens)
        text = ""
        # pipeline returns list: [{'generated_text':...}] or [{'generated_text' or 'text'}]
        if isinstance(out, list) and len(out) > 0:
            first = out[0]
            if isinstance(first, dict):
                # many HF pipelines use 'generated_text' or 'text'
                text = first.get("generated_text") or first.get("text") or str(first)
            else:
                text = str(first)
        else:
            text = str(out)
        _log_llm_call(None)
        return {"text": text, "confidence": None, "raw": out}
    except Exception as e:
        logger.error("LLM generation error: %s", e)
        traceback.print_exc()
        return {"text": rule_based_response(prompt), "confidence": None, "raw": str(e)}

# ----------------------------
# Zoho token refresh & MCP tools (unchanged)
# ----------------------------
def _get_valid_token_headers() -> dict:
    token_url = "https://accounts.zoho.in/oauth/v2/token"
    params = {"refresh_token": REFRESH_TOKEN, "client_id": CLIENT_ID, "client_secret": CLIENT_SECRET, "grant_type": "refresh_token"}
    r = requests.post(token_url, params=params, timeout=20)
    if r.status_code == 200:
        t = r.json().get("access_token")
        return {"Authorization": f"Zoho-oauthtoken {t}"}
    else:
        raise RuntimeError(f"Failed to refresh Zoho token: {r.status_code} {r.text}")

@mcp.tool()
def authenticate_zoho() -> str:
    try:
        _ = _get_valid_token_headers()
        _log_tool_call("authenticate_zoho", True)
        return "Zoho token refreshed (ok)."
    except Exception as e:
        _log_tool_call("authenticate_zoho", False)
        return f"Failed to authenticate: {e}"

@mcp.tool()
def create_record(module_name: str, record_data: dict) -> str:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}"
        payload = {"data": [record_data]}
        r = requests.post(url, headers=headers, json=payload, timeout=20)
        if r.status_code in (200, 201):
            _log_tool_call("create_record", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("create_record", False)
        return f"Error creating record: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("create_record", False)
        return f"Exception: {e}"

@mcp.tool()
def get_records(module_name: str, page: int = 1, per_page: int = 200) -> list:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}"
        r = requests.get(url, headers=headers, params={"page": page, "per_page": per_page}, timeout=20)
        if r.status_code == 200:
            _log_tool_call("get_records", True)
            return r.json().get("data", [])
        _log_tool_call("get_records", False)
        return [f"Error retrieving {module_name}: {r.status_code} {r.text}"]
    except Exception as e:
        _log_tool_call("get_records", False)
        return [f"Exception: {e}"]

@mcp.tool()
def update_record(module_name: str, record_id: str, data: dict) -> str:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}/{record_id}"
        payload = {"data": [data]}
        r = requests.put(url, headers=headers, json=payload, timeout=20)
        if r.status_code == 200:
            _log_tool_call("update_record", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("update_record", False)
        return f"Error updating: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("update_record", False)
        return f"Exception: {e}"

@mcp.tool()
def delete_record(module_name: str, record_id: str) -> str:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/{module_name}/{record_id}"
        r = requests.delete(url, headers=headers, timeout=20)
        if r.status_code == 200:
            _log_tool_call("delete_record", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("delete_record", False)
        return f"Error deleting: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("delete_record", False)
        return f"Exception: {e}"

@mcp.tool()
def create_invoice(data: dict) -> str:
    try:
        headers = _get_valid_token_headers()
        url = f"{API_BASE}/invoices"
        r = requests.post(url, headers=headers, json={"data": [data]}, timeout=20)
        if r.status_code in (200, 201):
            _log_tool_call("create_invoice", True)
            return json.dumps(r.json(), ensure_ascii=False)
        _log_tool_call("create_invoice", False)
        return f"Error creating invoice: {r.status_code} {r.text}"
    except Exception as e:
        _log_tool_call("create_invoice", False)
        return f"Exception: {e}"

@mcp.tool()
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
    """
    Accepts local path (e.g. /mnt/data/script_zoho_mcp) or URL.
    Per developer instruction we treat the path as the file URL (file://...).
    Replace placeholder OCR logic with your pipeline.
    """
    try:
        if os.path.exists(file_path):
            file_url = f"file://{file_path}"
            extracted = {
                "Name": "ACME Corp (simulated)",
                "Email": "[email protected]",
                "Phone": "+91-99999-00000",
                "Total": "1234.00",
                "Confidence": 0.88
            }
            _log_tool_call("process_document", True)
            return {"status": "success", "file": os.path.basename(file_path), "file_url": file_url, "target_module": target_module, "extracted_data": extracted}
        else:
            _log_tool_call("process_document", False)
            return {"status": "error", "error": "file not found", "file_path": file_path}
    except Exception as e:
        _log_tool_call("process_document", False)
        return {"status": "error", "error": str(e)}

# ----------------------------
# Simple command parser (explicit commands in chat)
# ----------------------------
def try_parse_and_invoke_command(text: str):
    text = text.strip()
    m = re.match(r"^create_record\s+(\w+)\s+(.+)$", text, re.I)
    if m:
        module = m.group(1); body = m.group(2)
        try: record_data = json.loads(body)
        except Exception: return "Invalid JSON for record_data"
        return create_record(module, record_data)
    m = re.match(r"^create_invoice\s+(.+)$", text, re.I)
    if m:
        body = m.group(1)
        try: invoice_data = json.loads(body)
        except Exception: return "Invalid JSON for invoice_data"
        return create_invoice(invoice_data)
    m = re.match(r"^(\/mnt\/data\/\S+)$", text)
    if m:
        path = m.group(1); return process_document(path)
    return None

# ----------------------------
# Chat handler that uses DeepSeek generation (or fallback)
# ----------------------------
def deepseek_response(message: str, history: Optional[List[Tuple[str,str]]] = None) -> str:
    history = history or []
    system_prompt = "You are Zoho Assistant. Prefer concise answers. If you want to call a tool, return a JSON object: {\"tool\": \"create_record\", \"args\": {...}}"
    # compact history into text for few-shot context (optional)
    history_text = ""
    for pair in history:
        try:
            u,a = pair[0], pair[1]
            history_text += f"User: {u}\nAssistant: {a}\n"
        except Exception:
            continue
    prompt = f"{system_prompt}\n{history_text}\nUser: {message}\nAssistant:"
    gen = deepseek_generate(prompt, max_tokens=256)
    text = gen.get("text", "")
    # if text looks like JSON with a tool action, try to invoke (normalize args first)
    payload = text.strip()
    if payload.startswith("{") or payload.startswith("["):
        try:
            parsed = json.loads(payload)
            if isinstance(parsed, dict) and "tool" in parsed:
                tool_name = parsed.get("tool"); args = parsed.get("args", {})
                # Normalize local path args if present
                args = _normalize_local_path_args(args) if isinstance(args, dict) else args
                if tool_name in globals() and callable(globals()[tool_name]):
                    try:
                        out = globals()[tool_name](**args) if isinstance(args, dict) else globals()[tool_name](args)
                        return f"Invoked tool '{tool_name}'. Result:\n{out}"
                    except Exception as e:
                        return f"Tool invocation error: {e}"
                else:
                    return f"Requested tool '{tool_name}' not found locally."
        except Exception:
            pass
    return text

# ----------------------------
# Gradio chat handler
# ----------------------------
def chat_handler(message, history):
    history = history or []
    trimmed = (message or "").strip()

    # explicit command parser
    cmd = try_parse_and_invoke_command(trimmed)
    if cmd is not None:
        return cmd

    # developer dev path handling (send path unchanged)
    if trimmed.startswith("/mnt/data/"):
        try:
            doc = process_document(trimmed)
            return f"Processed file {doc.get('file')}. Extracted: {json.dumps(doc.get('extracted_data'), ensure_ascii=False)}"
        except Exception as e:
            return f"Error processing document: {e}"

    # otherwise, call deepseek_response (LLM or fallback)
    try:
        return deepseek_response(trimmed, history)
    except Exception as e:
        logger.error("deepseek_response error: %s", e)
        traceback.print_exc()
        return rule_based_response(trimmed)

# ----------------------------
# Gradio UI
# ----------------------------
def chat_interface():
    return gr.ChatInterface(fn=chat_handler, textbox=gr.Textbox(placeholder="Ask me to create contacts, invoices, upload docs (or paste /mnt/data/... for dev)."))

# ----------------------------
# Entrypoint
# ----------------------------
if __name__ == "__main__":
    logger.info("Starting MCP server (DeepSeek mode). Loaded model: %s", LOADED_MODEL_NAME)
    demo = chat_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860)