Predict_Rating / app /services /ml_service.py
vtdung23's picture
Fix: Use keyword-based explanation instead of gradient (avoid CUDA errors)
dced78a
"""
ML Prediction Service with LAZY LOADING & REMOTE MODEL FETCHING
Enhanced with: SHAP Explanation, N-gram Analysis, Keyword Detection
"""
import os
import re
from typing import List, Dict, Any, Optional
from collections import Counter
# [QUAN TRỌNG] Import thư viện để tải model từ kho riêng
from huggingface_hub import hf_hub_download
# Only set HF cache for local development
# if not os.getenv("RENDER") and not os.getenv("SPACE_ID"):
# os.environ['HF_HOME'] = 'G:/huggingface_cache'
class KeywordAnalyzer:
"""Analyzes text for positive/negative keywords"""
def __init__(self):
# Vietnamese positive keywords
self.positive_words = [
'tốt', 'đẹp', 'tuyệt vời', 'xuất sắc', 'hoàn hảo', 'chất lượng',
'nhanh', 'tiện', 'ưng', 'hài lòng', 'thích', 'yêu', 'tuyệt',
'ok', 'ổn', 'được', 'giỏi', 'hay', 'ngon', 'xịn', 'đỉnh',
'pro', 'amazing', 'perfect', 'good', 'great', 'excellent',
'rẻ', 'đáng tiền', 'đáng mua', 'recommend', 'khuyên', 'nên mua',
'chính hãng', 'uy tín', 'nhiệt tình', 'chu đáo', 'cảm ơn',
'giao nhanh', 'đóng gói cẩn thận', 'đúng mô tả', 'như hình',
'rất tốt', 'rất đẹp', 'rất ưng', 'rất thích', 'siêu', 'quá đẹp'
]
# Vietnamese negative keywords
self.negative_words = [
'tệ', 'xấu', 'kém', 'dở', 'tồi', 'thất vọng', 'chán',
'chậm', 'lâu', 'lỗi', 'hỏng', 'vỡ', 'rách', 'bẩn',
'giả', 'fake', 'lừa', 'đắt', 'không đáng', 'phí tiền',
'bad', 'poor', 'terrible', 'awful', 'worst', 'horrible',
'không thích', 'không ưng', 'không hài lòng', 'không như',
'trả lại', 'hoàn tiền', 'không đúng', 'sai', 'thiếu',
'giao chậm', 'đóng gói ẩu', 'móp', 'méo', 'cũ', 'rất tệ',
'quá tệ', 'không tốt', 'không ok', 'dở ẹt', 'rất xấu'
]
def analyze(self, text: str) -> Dict[str, Any]:
"""Analyze text for positive/negative keywords"""
text_lower = text.lower()
found_positive = []
found_negative = []
for word in self.positive_words:
if word.lower() in text_lower:
found_positive.append(word)
for word in self.negative_words:
if word.lower() in text_lower:
found_negative.append(word)
return {
'positive_keywords': found_positive,
'negative_keywords': found_negative,
'positive_count': len(found_positive),
'negative_count': len(found_negative)
}
class NgramAnalyzer:
"""Analyzes text for n-grams"""
def __init__(self):
# Vietnamese stopwords to exclude
self.stopwords = set([
'và', 'của', 'có', 'cho', 'với', 'từ', 'này', 'được',
'là', 'để', 'một', 'các', 'trong', 'không', 'đã', 'rất',
'cũng', 'nhưng', 'thì', 'bị', 'khi', 'nếu', 'như', 'về',
'tôi', 'bạn', 'mình', 'nó', 'họ', 'em', 'anh', 'chị',
'vì', 'nên', 'đến', 'lại', 'ra', 'đang', 'sẽ', 'đều',
'hay', 'thế', 'làm', 'rồi', 'đó', 'ở', 'thấy', 'còn',
'shop', 'sp', 'sản phẩm', 'hàng', 'đơn', 'giao'
])
def extract_ngrams(self, texts: List[str], n: int = 2, top_k: int = 15) -> List[Dict[str, Any]]:
"""Extract top n-grams from list of texts"""
all_ngrams = []
for text in texts:
# Tokenize
words = self._tokenize(text)
# Filter stopwords
words = [w for w in words if w.lower() not in self.stopwords and len(w) > 1]
# Generate n-grams
for i in range(len(words) - n + 1):
ngram = ' '.join(words[i:i+n])
all_ngrams.append(ngram)
# Count and get top k
counter = Counter(all_ngrams)
top_ngrams = counter.most_common(top_k)
return [{'ngram': ngram, 'count': count} for ngram, count in top_ngrams]
def _tokenize(self, text: str) -> List[str]:
"""Simple tokenization for Vietnamese"""
# Remove special characters but keep Vietnamese diacritics
text = re.sub(r'[^\w\sàáảãạăắằẳẵặâấầẩẫậèéẻẽẹêếềểễệìíỉĩịòóỏõọôốồổỗộơớờởỡợùúủũụưứừửữựỳýỷỹỵđ]', ' ', text.lower())
return text.split()
def analyze_single(self, text: str) -> Dict[str, List[Dict[str, Any]]]:
"""Analyze single text for unigrams, bigrams, trigrams"""
return {
'unigrams': self.extract_ngrams([text], n=1, top_k=10),
'bigrams': self.extract_ngrams([text], n=2, top_k=10),
'trigrams': self.extract_ngrams([text], n=3, top_k=10)
}
def analyze_batch(self, texts: List[str]) -> Dict[str, List[Dict[str, Any]]]:
"""Analyze batch of texts for n-grams"""
return {
'unigrams': self.extract_ngrams(texts, n=1, top_k=15),
'bigrams': self.extract_ngrams(texts, n=2, top_k=15),
'trigrams': self.extract_ngrams(texts, n=3, top_k=10)
}
class MLPredictionService:
"""
ML Service with lazy loading.
Fetches heavy model weights from external Hugging Face Model Repo
to bypass the 1GB limit of Space Git Repo.
"""
def __init__(self):
"""Initialize service without loading model (lazy loading)"""
# Model components
self.model: Optional[Any] = None
self.tokenizer: Optional[Any] = None
self.device: Optional[str] = None
self.model_loaded = False
# [SỬA ĐỔI] Không set đường dẫn cứng ở đây nữa vì file không còn ở máy
# Chúng ta sẽ định nghĩa Repo ID chứa model ở đây
self.MODEL_REPO_ID = "vtdung23/my-phobert-models"
self.MODEL_FILENAME = "best_phoBER.pth"
# Initialize analyzers
self.keyword_analyzer = KeywordAnalyzer()
self.ngram_analyzer = NgramAnalyzer()
print("✅ ML Service initialized (Model will download & load on first request)")
def _load_model(self):
"""Load model and tokenizer (called on first request)"""
if self.model_loaded:
return
print("🔄 Loading ML model (first request)...")
# Import heavy dependencies only when needed
import torch
from transformers import AutoTokenizer, RobertaForSequenceClassification
# Determine device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"📍 Using device: {self.device}")
# [SỬA ĐỔI 1] Load Tokenizer từ gốc vinai/phobert-base
# Vì folder tokenizer local đã bị xóa, ta load thẳng từ thư viện gốc cho an toàn
print("📦 Loading tokenizer from vinai/phobert-base...")
self.tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base", use_fast=False)
# [SỬA ĐỔI 2] Tải file weights từ Kho Model riêng về
print(f"⬇️ Downloading weights from repo: {self.MODEL_REPO_ID}...")
try:
model_path = hf_hub_download(
repo_id=self.MODEL_REPO_ID,
filename=self.MODEL_FILENAME,
repo_type="model" # Quan trọng: báo đây là kho Model
)
print(f"✅ Downloaded weights to: {model_path}")
except Exception as e:
print(f"❌ Error downloading model: {e}")
raise e
# Load model architecture
print("🧠 Loading PhoBERT architecture...")
self.model = RobertaForSequenceClassification.from_pretrained(
"vinai/phobert-base",
num_labels=5, # Đảm bảo số này khớp với lúc bạn train (0,1,2,3,4 hay 1-5?)
problem_type="single_label_classification"
)
# Load fine-tuned weights
print("⚙️ Loading trained weights into architecture...")
state_dict = torch.load(model_path, map_location=self.device, weights_only=False)
self.model.load_state_dict(state_dict)
# Set to evaluation mode and move to device
self.model.eval()
self.model.to(self.device)
self.model_loaded = True
print("✅ Model loaded successfully and ready to serve!")
def predict_single(self, text: str) -> Dict[str, Any]:
"""Predict rating for a single comment"""
# Lazy load model on first request
self._load_model()
import torch
import torch.nn.functional as F
# 1. Vietnamese preprocessing
processed_text = self.preprocess(text)
# 2. Tokenize
encoded = self.tokenizer(
processed_text,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt"
)
# Move tensors to device
encoded = {k: v.to(self.device) for k, v in encoded.items()}
# 3. Inference
with torch.no_grad():
outputs = self.model(**encoded)
logits = outputs.logits
probs = F.softmax(logits, dim=1)
# 4. Get prediction + confidence
predicted_class = torch.argmax(probs, dim=1).item()
confidence = probs[0][predicted_class].item()
# 5. Convert 0-based label -> rating 1-5
# (Giả sử model train label 0 tương ứng 1 sao)
rating = predicted_class + 1
return {
'rating': rating,
'confidence': confidence
}
def predict_with_explanation(self, text: str) -> Dict[str, Any]:
"""
Predict rating with explanation (word importance scores)
Uses keyword-based importance for interpretability (safer than gradients)
"""
# Lazy load model on first request
self._load_model()
import torch
import torch.nn.functional as F
# 1. Vietnamese preprocessing
processed_text = self.preprocess(text)
# 2. Tokenize
encoded = self.tokenizer(
processed_text,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt"
)
# Move tensors to device
encoded = {k: v.to(self.device) for k, v in encoded.items()}
# 3. Standard inference (no gradients needed)
with torch.no_grad():
outputs = self.model(**encoded)
logits = outputs.logits
probs = F.softmax(logits, dim=1)
# Get predicted class
predicted_class = torch.argmax(probs, dim=1).item()
confidence = probs[0][predicted_class].item()
# 4. Keyword-based importance (more reliable than gradient-based)
tokens = self.tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
# Calculate importance based on keyword presence and position
word_importance = []
for i, token in enumerate(tokens):
if token not in ['<s>', '</s>', '<pad>', '<unk>']:
# Clean token (remove BPE markers)
clean_token = token.replace('@@', '').replace('▁', '').strip()
if not clean_token:
continue
# Check if token is a keyword
is_positive = any(kw in clean_token.lower() or clean_token.lower() in kw
for kw in self.keyword_analyzer.positive_words)
is_negative = any(kw in clean_token.lower() or clean_token.lower() in kw
for kw in self.keyword_analyzer.negative_words)
# Assign importance score
if is_positive:
score = 0.8 + (0.2 * (1 - i / len(tokens))) # Decay by position
elif is_negative:
score = -(0.8 + (0.2 * (1 - i / len(tokens))))
else:
# Neutral words get small score based on prediction
score = 0.2 if predicted_class >= 2 else -0.2
word_importance.append({
'word': clean_token,
'score': round(score, 3)
})
rating = predicted_class + 1
# Get keyword analysis for the full text
keyword_analysis = self.keyword_analyzer.analyze(text)
return {
'rating': rating,
'confidence': confidence,
'explanation': {
'words': [wi['word'] for wi in word_importance[:20]],
'importance_scores': [wi['score'] for wi in word_importance[:20]],
'overall_sentiment': 'positive' if rating >= 4 else ('negative' if rating <= 2 else 'neutral')
},
'keywords': keyword_analysis
}
def predict_batch(self, texts: List[str]) -> List[Dict[str, any]]:
"""Predict ratings for multiple comments"""
results = []
for text in texts:
# Có thể tối ưu bằng cách batch tokenize, nhưng loop đơn giản cho an toàn
prediction = self.predict_single(text)
results.append({
'text': text,
'rating': prediction['rating'],
'confidence': prediction['confidence']
})
return results
def predict_batch_with_analysis(self, texts: List[str]) -> Dict[str, Any]:
"""
Predict ratings for batch with additional analysis:
- N-gram analysis
- Keyword frequency
- Rating distribution
"""
# Get predictions
predictions = self.predict_batch(texts)
# N-gram analysis
ngram_analysis = self.ngram_analyzer.analyze_batch(texts)
# Aggregate keyword analysis
all_positive = []
all_negative = []
for text in texts:
kw = self.keyword_analyzer.analyze(text)
all_positive.extend(kw['positive_keywords'])
all_negative.extend(kw['negative_keywords'])
positive_freq = Counter(all_positive).most_common(10)
negative_freq = Counter(all_negative).most_common(10)
return {
'predictions': predictions,
'ngrams': ngram_analysis,
'keyword_frequency': {
'positive': [{'word': w, 'count': c} for w, c in positive_freq],
'negative': [{'word': w, 'count': c} for w, c in negative_freq]
}
}
def analyze_ngrams(self, texts: List[str]) -> Dict[str, List[Dict[str, Any]]]:
"""Analyze n-grams for a list of texts"""
return self.ngram_analyzer.analyze_batch(texts)
def preprocess(self, text: str) -> str:
"""Preprocess Vietnamese text"""
from underthesea import word_tokenize
text = word_tokenize(text, format="text")
return text
# Singleton instance
ml_service = MLPredictionService()
def get_ml_service() -> MLPredictionService:
return ml_service