Spaces:
Running
Running
File size: 14,826 Bytes
899327c ccd869c 899327c ccd869c 899327c ccd869c 899327c ccd869c 899327c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
"""
Vehicle trajectory extractor powered by SAM3.
The app takes an aerial video, segments small and large vehicles frame-by-frame
with text prompts (`small-vehicle`, `large-vehicle`), and draws their
trajectories on top of the footage.
"""
from __future__ import annotations
import math
import os
import tempfile
import uuid
from dataclasses import dataclass
from typing import Dict, List, Sequence, Tuple
import cv2
import gradio as gr
import numpy as np
from PIL import Image
import torch
from transformers import pipeline
# -----------------------------------------------------------------------------
# Configuration
# -----------------------------------------------------------------------------
MODEL_ID = "facebook/sam3"
TEXT_PROMPTS = ["small-vehicle", "large-vehicle"]
MIN_MASK_PIXELS = 150 # filter spurious detections
MAX_TRACK_GAP = 3 # frames
DEFAULT_FRAME_STRIDE = 5
MAX_PROCESSED_FRAMES = 720
CLASS_COLORS: Dict[str, Tuple[int, int, int]] = {
"small-vehicle": (20, 148, 245), # RGB
"large-vehicle": (255, 120, 30),
}
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# -----------------------------------------------------------------------------
# Model + processor
# -----------------------------------------------------------------------------
# Use pipeline as shown in Hugging Face guidance
# Then extract model and processor for text-prompt support
mask_pipe = pipeline("mask-generation", model=MODEL_ID, device=0 if DEVICE == "cuda" else -1)
# Extract model and processor from pipeline for direct text prompt usage
model = mask_pipe.model
processor = mask_pipe.feature_extractor if hasattr(mask_pipe, 'feature_extractor') else mask_pipe.image_processor
# -----------------------------------------------------------------------------
# Tracking utilities
# -----------------------------------------------------------------------------
@dataclass
class Track:
track_id: int
label: str
points: List[Tuple[int, float, float]]
last_frame: int
score: float | None
def _extract_detections(frame_rgb: np.ndarray) -> List[Dict]:
pil_image = Image.fromarray(frame_rgb)
detections: List[Dict] = []
for label in TEXT_PROMPTS:
# Use processor and model directly with text prompt
try:
inputs = processor(images=pil_image, text=label, return_tensors="pt")
inputs = {
k: (v.to(DEVICE) if isinstance(v, torch.Tensor) else v)
for k, v in inputs.items()
}
with torch.inference_mode():
outputs = model(**inputs)
# Extract masks from outputs - SAM3 outputs structure may vary
if hasattr(outputs, "pred_masks"):
masks = outputs.pred_masks
elif hasattr(outputs, "masks"):
masks = outputs.masks
elif isinstance(outputs, dict):
masks = outputs.get("pred_masks") or outputs.get("masks")
else:
masks = outputs
if masks is None:
continue
# Handle different mask formats
if isinstance(masks, torch.Tensor):
if masks.ndim == 4: # [batch, num_masks, H, W]
masks = masks[0] # Remove batch dimension
elif masks.ndim == 3: # [num_masks, H, W]
pass
else:
continue
for mask_tensor in masks:
mask_np = mask_tensor.squeeze().detach().cpu().numpy()
if mask_np.ndim == 3:
mask_np = mask_np[0]
binary_mask = mask_np > 0.5
area = int(binary_mask.sum())
if area < MIN_MASK_PIXELS:
continue
ys, xs = np.nonzero(binary_mask)
if len(xs) == 0:
continue
centroid = (float(xs.mean()), float(ys.mean()))
detections.append(
{
"label": label,
"mask": binary_mask,
"score": None,
"centroid": centroid,
"area": area,
}
)
except Exception as e:
# Fallback to pipeline if direct access fails
try:
results = mask_pipe(pil_image)
if not isinstance(results, list):
results = [results]
for result in results:
if isinstance(result, dict):
mask = result.get("mask")
score = result.get("score")
else:
mask = result
score = None
if isinstance(mask, Image.Image):
mask_np = np.array(mask.convert("L"))
elif isinstance(mask, torch.Tensor):
mask_np = mask.squeeze().detach().cpu().numpy()
elif isinstance(mask, np.ndarray):
mask_np = mask
else:
continue
if mask_np.ndim == 3:
mask_np = mask_np[:, :, 0] if mask_np.shape[2] == 1 else mask_np.max(axis=2)
if mask_np.max() > 1.0:
mask_np = mask_np / 255.0
binary_mask = mask_np > 0.5
area = int(binary_mask.sum())
if area < MIN_MASK_PIXELS:
continue
ys, xs = np.nonzero(binary_mask)
if len(xs) == 0:
continue
centroid = (float(xs.mean()), float(ys.mean()))
detections.append(
{
"label": label,
"mask": binary_mask,
"score": float(score) if score is not None else None,
"centroid": centroid,
"area": area,
}
)
except Exception as e2:
raise gr.Error(f"Both direct model access and pipeline failed: {e2}")
return detections
def _update_tracks(
tracks: List[Track],
detections: Sequence[Dict],
frame_idx: int,
max_distance: float,
) -> None:
for detection in detections:
centroid = np.array(detection["centroid"])
best_track = None
best_distance = math.inf
for track in tracks:
if track.label != detection["label"]:
continue
if frame_idx - track.last_frame > MAX_TRACK_GAP:
continue
prev_point = np.array(track.points[-1][1:])
dist = np.linalg.norm(centroid - prev_point)
if dist < best_distance and dist <= max_distance:
best_distance = dist
best_track = track
if best_track:
best_track.points.append((frame_idx, *detection["centroid"]))
best_track.last_frame = frame_idx
best_track.score = detection["score"]
else:
new_track = Track(
track_id=len(tracks) + 1,
label=detection["label"],
points=[(frame_idx, *detection["centroid"])],
last_frame=frame_idx,
score=detection["score"],
)
tracks.append(new_track)
def _blend_mask(frame: np.ndarray, mask: np.ndarray, color: Tuple[int, int, int], alpha: float = 0.45):
overlay = frame.copy()
overlay[mask] = (1 - alpha) * overlay[mask] + alpha * np.array(color, dtype=np.float32)
return overlay
def _draw_annotations(
frame_rgb: np.ndarray,
detections: Sequence[Dict],
tracks: Sequence[Track],
frame_idx: int,
):
annotated = frame_rgb.astype(np.float32)
for det in detections:
color_rgb = CLASS_COLORS.get(det["label"], (255, 255, 255))
color_bgr = tuple(int(c) for c in reversed(color_rgb))
annotated = _blend_mask(annotated, det["mask"], color_rgb)
cx, cy = det["centroid"]
cv2.circle(annotated, (int(cx), int(cy)), 4, color_bgr, -1)
cv2.putText(
annotated,
det["label"],
(int(cx) + 4, int(cy) - 4),
cv2.FONT_HERSHEY_SIMPLEX,
0.4,
color_bgr,
1,
cv2.LINE_AA,
)
for track in tracks:
if len(track.points) < 2:
continue
if track.points[-1][0] < frame_idx - MAX_TRACK_GAP:
continue
color_rgb = CLASS_COLORS.get(track.label, (255, 255, 255))
color_bgr = tuple(int(c) for c in reversed(color_rgb))
pts = [
(int(x), int(y))
for (f_idx, x, y) in track.points
if f_idx <= frame_idx
]
for i in range(1, len(pts)):
cv2.line(annotated, pts[i - 1], pts[i], color_bgr, 2, cv2.LINE_AA)
cv2.circle(annotated, pts[-1], 5, color_bgr, -1)
return np.clip(annotated, 0, 255).astype(np.uint8)
def _summarize_tracks(tracks: Sequence[Track]) -> List[Dict]:
summary = []
for track in tracks:
if len(track.points) < 2:
continue
distances = []
for (prev_frame, x1, y1), (curr_frame, x2, y2) in zip(track.points, track.points[1:]):
distances.append(math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
summary.append(
{
"track_id": track.track_id,
"label": track.label,
"frames": len(track.points),
"start_frame": track.points[0][0],
"end_frame": track.points[-1][0],
"path_px": round(float(sum(distances)), 2),
}
)
return summary
# -----------------------------------------------------------------------------
# Video processing
# -----------------------------------------------------------------------------
def analyze_video(
video_path: str,
frame_stride: int = DEFAULT_FRAME_STRIDE,
max_frames: int = MAX_PROCESSED_FRAMES,
resize_long_edge: int = 1280,
) -> Tuple[str, List[Dict]]:
if not video_path:
raise gr.Error("Please upload an aerial video (MP4, MOV, ...).")
capture = cv2.VideoCapture(video_path)
if not capture.isOpened():
raise gr.Error("Unable to read the uploaded video.")
fps = capture.get(cv2.CAP_PROP_FPS) or 15
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
diag = math.sqrt(width**2 + height**2)
max_assign_distance = 0.04 * diag
processed_frames = []
tracks: List[Track] = []
frame_index = 0
processed_count = 0
while processed_count < max_frames:
ret, frame_bgr = capture.read()
if not ret:
break
if frame_index % frame_stride != 0:
frame_index += 1
continue
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
frame_rgb = _resize_long_edge(frame_rgb, resize_long_edge)
detections = _extract_detections(frame_rgb)
_update_tracks(tracks, detections, frame_index, max_assign_distance)
annotated = _draw_annotations(frame_rgb, detections, tracks, frame_index)
processed_frames.append(cv2.cvtColor(annotated, cv2.COLOR_RGB2BGR))
processed_count += 1
frame_index += 1
capture.release()
if not processed_frames:
raise gr.Error("No frames were processed. Try lowering the stride or uploading a different video.")
output_path = _write_video(processed_frames, fps / max(frame_stride, 1))
summary = _summarize_tracks(tracks)
return output_path, summary
def _resize_long_edge(frame_rgb: np.ndarray, target_long_edge: int) -> np.ndarray:
h, w, _ = frame_rgb.shape
long_edge = max(h, w)
if long_edge <= target_long_edge:
return frame_rgb
scale = target_long_edge / long_edge
new_size = (int(w * scale), int(h * scale))
resized = cv2.resize(frame_rgb, new_size, interpolation=cv2.INTER_AREA)
return resized
def _write_video(frames: Sequence[np.ndarray], fps: float) -> str:
height, width, _ = frames[0].shape
tmp_path = os.path.join(tempfile.gettempdir(), f"sam3-trajectories-{uuid.uuid4().hex}.mp4")
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
writer = cv2.VideoWriter(tmp_path, fourcc, max(fps, 1.0), (width, height))
for frame in frames:
writer.write(frame)
writer.release()
return tmp_path
# -----------------------------------------------------------------------------
# Gradio UI
# -----------------------------------------------------------------------------
with gr.Blocks(title="SAM3 Vehicle Trajectories") as demo:
gr.Markdown(
"""
### SAM3 for Vehicle Trajectories
1. Upload an aerial surveillance video.
2. The app prompts SAM3 with `small-vehicle` and `large-vehicle`.
3. Segmentations are linked across frames to render motion trails.
"""
)
with gr.Row():
video_input = gr.Video(label="Aerial video (MP4/MOV)")
controls = gr.Column()
with controls:
stride_slider = gr.Slider(
label="Frame stride",
minimum=1,
maximum=12,
value=DEFAULT_FRAME_STRIDE,
step=1,
info="Process one frame every N frames",
)
max_frames_slider = gr.Slider(
label="Max frames to process",
minimum=30,
maximum=1000,
value=MAX_PROCESSED_FRAMES,
step=10,
)
resize_slider = gr.Slider(
label="Resize longest edge (px)",
minimum=640,
maximum=1920,
value=1280,
step=40,
)
output_video = gr.Video(label="Overlay with trajectories")
track_table = gr.Dataframe(
headers=["track_id", "label", "frames", "start_frame", "end_frame", "path_px"],
datatype=["number", "str", "number", "number", "number", "number"],
wrap=True,
label="Track summary",
)
run_button = gr.Button("Extract trajectories", variant="primary")
run_button.click(
fn=analyze_video,
inputs=[video_input, stride_slider, max_frames_slider, resize_slider],
outputs=[output_video, track_table],
api_name="analyze",
)
if __name__ == "__main__":
demo.launch()
|