ner-bge-small-en-v1_5_baseline
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1337
- Precision: 0.9271
- Recall: 0.9352
- F1: 0.9311
- Accuracy: 0.9832
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.969409787289472e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0214 | 1.0 | 2503 | 0.1404 | 0.8961 | 0.9221 | 0.9089 | 0.9800 |
| 0.0041 | 2.0 | 5006 | 0.1326 | 0.9071 | 0.9236 | 0.9153 | 0.9806 |
| 0.0089 | 3.0 | 7509 | 0.1329 | 0.9024 | 0.9211 | 0.9116 | 0.9794 |
| 0.0256 | 4.0 | 10012 | 0.1220 | 0.9081 | 0.9263 | 0.9171 | 0.9814 |
| 0.0289 | 5.0 | 12515 | 0.1229 | 0.9159 | 0.9293 | 0.9226 | 0.9825 |
| 0.0038 | 6.0 | 15018 | 0.1333 | 0.9206 | 0.9285 | 0.9245 | 0.9819 |
| 0.0015 | 7.0 | 17521 | 0.1353 | 0.9239 | 0.9355 | 0.9297 | 0.9831 |
| 0.0021 | 8.0 | 20024 | 0.1352 | 0.9207 | 0.9335 | 0.9270 | 0.9827 |
| 0.0003 | 9.0 | 22527 | 0.1307 | 0.9216 | 0.9357 | 0.9286 | 0.9832 |
| 0.001 | 10.0 | 25030 | 0.1337 | 0.9271 | 0.9352 | 0.9311 | 0.9832 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for vladsanz239/ner-bge-small-en-v1_5_baseline
Base model
BAAI/bge-small-en-v1.5