openai/whisper-base

This model is a fine-tuned version of openai/whisper-base on the common_voice_22_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5965
  • Wer: 14.1271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 128
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0041 21.6450 5000 0.3770 16.8402
0.0025 43.2900 10000 0.4045 16.4480
0.0034 64.9351 15000 0.4193 16.2587
0.0014 86.5801 20000 0.4449 15.8953
0.0012 108.2251 25000 0.4490 15.8251
0.0 129.8701 30000 0.4585 14.3882
0.0 151.5152 35000 0.4865 13.9656
0.0 173.1602 40000 0.5256 13.7763
0.0 194.8052 45000 0.5518 13.6419
0.0 216.4502 50000 0.5558 13.6461
0.0 238.0952 55000 0.5683 13.7171
0.0 259.7403 60000 0.5801 13.9259
0.0 281.3853 65000 0.5886 13.9631
0.0 303.0303 70000 0.5965 14.1271

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
94
Safetensors
Model size
72.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for zuazo/whisper-base-eu-cv22.0

Finetuned
(570)
this model

Evaluation results