math_collective_v1 / README.md
AbstractPhil's picture
Update README.md
8bf526c verified
---
license: apache-2.0
tags:
- geofractal-router
- collective-intelligence
- math-reasoning
- multi-stream
- emergence
- routing
datasets:
- openai/gsm8k
base_model:
- tbs17/MathBERT
- google-t5/t5-base
pipeline_tag: text-classification
---
# V2 first epoch ready
Looking much stronger.
![image](https://cdn-uploads.huggingface.co/production/uploads/630cf55b15433862cfc9556f/n-I_F4q4xhj-5sPZrmohJ.png)
# V1 BAD END - V2 using qwen 2.5 math 1.5b
Will the Qwen 2.5 1.5b model cut through the noise?
```
======================================================================
GALAXY BRAIN COLLECTIVE - GSM8K FINAL RESULTS
======================================================================
Streams:
FUZZY: MathBERT (symbolic), T5 (linguistic)
DETERMINISTIC: Eigenspectrum, Cayley-Menger, Symbolic Calc, Fractal
| Epoch | Collective | MathBERT | T5 | Eigen | Cayley | Symbolic | Fractal | ρ |
|-------|------------|----------|-----|-------|--------|----------|---------|-------|
| 1 | 8.9% | 10.4% | 13.0% | 5.4% | 5.4% | 5.7% | 6.7% | 0.686 |
| 2 | 9.6% | 8.9% | 13.0% | 6.5% | 6.5% | 4.6% | 6.1% | 0.738 |
| 3 | 9.9% | 9.6% | 13.6% | 5.8% | 5.8% | 4.5% | 5.8% | 0.728 |
| 4 | 8.3% | 10.1% | 13.3% | 6.1% | 4.5% | 4.8% | 4.5% | 0.619 |
| 5 | 9.0% | 11.1% | 14.6% | 4.5% | 4.6% | 5.0% | 5.9% | 0.620 |
βœ“ Best epoch: 3 with collective accuracy 9.9%
βœ“ All checkpoints available at: https://huggingface.co/AbstractPhil/math_collective
```
# Math Collective - Galaxy Brain Router
**6-stream collective intelligence system for mathematical reasoning.**
## Architecture
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ GALAXY BRAIN COLLECTIVE β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ FUZZY STREAMS (learned representations) β”‚
β”‚ β”œβ”€β”€ MathBERT (frozen) β†’ Head A β†’ "symbolic understanding" β”‚
β”‚ └── T5-base (frozen) β†’ Head B β†’ "linguistic reasoning" β”‚
β”‚ β”‚
β”‚ DETERMINISTIC STREAMS (pure computation) β”‚
β”‚ β”œβ”€β”€ Eigenspectrum β†’ Head C β†’ "covariance geometry" β”‚
β”‚ β”œβ”€β”€ Cayley-Menger β†’ Head D β†’ "distance geometry" β”‚
β”‚ β”œβ”€β”€ Symbolic Calc β†’ Head E β†’ "actual arithmetic" β”‚
β”‚ └── Fractal Dim β†’ Head F β†’ "complexity measure" β”‚
β”‚ β”‚
β”‚ All 6 streams β†’ Fusion β†’ Classifier β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```
## Key Innovation
**Fuzzy + Deterministic Routing**
The router learns WHEN to trust each stream:
- Simple arithmetic? Trust the Symbolic Calculator (deterministic)
- Complex word problem? Trust MathBERT/T5 (semantic)
- Ambiguous? Triangulate across all 6 perspectives
## Streams
| Stream | Type | Source | Purpose |
|--------|------|--------|---------|
| MathBERT | Fuzzy | tbs17/MathBERT (frozen) | Mathematical notation understanding |
| T5-base | Fuzzy | t5-base (frozen) | General language reasoning |
| Eigenspectrum | Deterministic | Covariance eigenvalues | Geometric structure of embeddings |
| Cayley-Menger | Deterministic | Distance matrix geometry | Simplex volume features |
| Symbolic | Deterministic | Regex + arithmetic | Actual number extraction & computation |
| Fractal | Deterministic | Correlation dimension | Problem complexity measure |
## Training
- **Dataset**: GSM8K (Grade School Math 8K)
- **Task**: Answer magnitude bucket prediction (20 buckets)
- **Frozen params**: ~330M (MathBERT + T5)
- **Trainable params**: ~15M (routing heads, fusion, projections)
## Emergence Metric (ρ)
```
ρ = collective_accuracy / max(individual_accuracies)
ρ > 1.0 = emergence (collective outperforms best individual)
```
## Usage
```python
from huggingface_hub import hf_hub_download
import torch
# Download checkpoint
checkpoint_path = hf_hub_download(
repo_id="AbstractPhil/math_collective",
filename="checkpoints/checkpoint_epoch_5.pt"
)
# Load and use (see geofractal-router for full implementation)
checkpoint = torch.load(checkpoint_path)
print(f"Epoch: {checkpoint['epoch']}")
print(f"Metrics: {checkpoint['metrics']}")
```
## Related
- **Framework**: [AbstractPhil/geofractal_router](https://huggingface.co/AbstractPhil/geofractal_router)
- **Paper**: Coming soon
- **Code**: [GitHub - geofractal](https://github.com/AbstractEyes/geofractal)
## Citation
```bibtex
@misc{abstractphil2025mathcollective,
title={Math Collective: Galaxy Brain Routing for Mathematical Reasoning},
author={AbstractPhil},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/AbstractPhil/math_collective}
}
```
## License
Apache 2.0