aiproject / app.py
Sayed223's picture
Update app.py
0550c3e verified
import os
import io
import base64
import traceback
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
from flask import Flask, request, render_template, flash, redirect, url_for, jsonify
from dotenv import load_dotenv
# Use the auto classes to avoid version-specific direct imports
from transformers import (
AutoModel, # used for vision (Swin)
AutoImageProcessor, # optional: if you want processor instead of torchvision
T5ForConditionalGeneration,
T5Tokenizer,
AutoModelForCausalLM,
AutoTokenizer,
)
from transformers.modeling_outputs import BaseModelOutput
load_dotenv() # Load environment variables from .env file
# --- Configuration ---
MODEL_PATH = '/cluster/home/ammaa/Downloads/Projects/CheXpert-Report-Generation/swin-t5-model.pth'
SWIN_MODEL_NAME = "microsoft/swin-base-patch4-window7-224"
T5_MODEL_NAME = "t5-base"
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN") # Hugging Face token (optional)
if not HF_TOKEN:
print("Warning: HUGGING_FACE_HUB_TOKEN environment variable not set. Llama model download might fail.")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
UPLOAD_FOLDER = 'uploads'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
# --- Swin-T5 Model Definition ---
class ImageCaptioningModel(nn.Module):
def __init__(self,
swin_model_name=SWIN_MODEL_NAME,
t5_model_name=T5_MODEL_NAME):
super().__init__()
# Use AutoModel for the vision backbone (works across transformer versions)
self.swin = AutoModel.from_pretrained(swin_model_name)
self.t5 = T5ForConditionalGeneration.from_pretrained(t5_model_name)
# Project swin hidden states to T5 d_model
self.img_proj = nn.Linear(self.swin.config.hidden_size, self.t5.config.d_model)
def forward(self, images, labels=None):
# images: expected shape (batch, channels, height, width)
swin_outputs = self.swin(images, return_dict=True)
img_feats = swin_outputs.last_hidden_state # (batch, seq_len, hidden)
img_feats_proj = self.img_proj(img_feats) # project to T5 d_model
encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)
if labels is not None:
outputs = self.t5(encoder_outputs=encoder_outputs, labels=labels)
else:
outputs = self.t5(encoder_outputs=encoder_outputs)
return outputs
# --- Global Variables for Model Components ---
swin_t5_model = None
swin_t5_tokenizer = None
transform = None
llama_model = None
llama_tokenizer = None
def load_swin_t5_model_components():
"""Loads the Swin-T5 model, tokenizer, and transformation pipeline."""
global swin_t5_model, swin_t5_tokenizer, transform
try:
print(f"Loading Swin-T5 model components on device: {DEVICE}")
# Initialize model structure
swin_t5_model = ImageCaptioningModel(swin_model_name=SWIN_MODEL_NAME, t5_model_name=T5_MODEL_NAME)
# Load state dictionary if provided
if not os.path.exists(MODEL_PATH):
raise FileNotFoundError(f"Swin-T5 Model file not found at {MODEL_PATH}.")
# Load state dict into model (map_location ensures correct device)
state = torch.load(MODEL_PATH, map_location=DEVICE)
# If the saved state is a dict containing model key (common), attempt to pull it
if isinstance(state, dict) and "model_state_dict" in state and len(state) > 1:
# typical saved checkpoint structure { 'epoch':..., 'model_state_dict':..., ... }
swin_t5_model.load_state_dict(state["model_state_dict"])
else:
swin_t5_model.load_state_dict(state)
swin_t5_model.to(DEVICE)
swin_t5_model.eval()
print("Swin-T5 Model loaded successfully.")
# Load tokenizer for T5
swin_t5_tokenizer = T5Tokenizer.from_pretrained(T5_MODEL_NAME)
print("Swin-T5 Tokenizer loaded successfully.")
# Define (simple) image transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
print("Transforms defined.")
except Exception as e:
print(f"Error loading Swin-T5 model components: {e}")
print(traceback.format_exc())
# Re-raise so startup knows loading failed (your code caught it)
raise
def load_llama_model_components():
"""Loads the Llama model and tokenizer."""
global llama_model, llama_tokenizer
if not HF_TOKEN:
print("Skipping Llama model load: Hugging Face token not found.")
return
try:
print(f"Loading Llama model ({LLAMA_MODEL_NAME}) components...")
# Choose an appropriate dtype for loading
if torch.cuda.is_available():
# prefer bf16 if supported to save memory on modern GPUs
try:
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
except Exception:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Use use_auth_token parameter for private models / gated access
llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_auth_token=HF_TOKEN)
llama_model = AutoModelForCausalLM.from_pretrained(
LLAMA_MODEL_NAME,
torch_dtype=torch_dtype,
device_map="auto",
use_auth_token=HF_TOKEN
)
llama_model.eval()
print("Llama Model and Tokenizer loaded successfully.")
except Exception as e:
print(f"Error loading Llama model components: {e}")
print(traceback.format_exc())
llama_model = None
llama_tokenizer = None
print("WARNING: Chatbot functionality will be disabled due to loading error.")
# --- Inference Function (Swin-T5) ---
def generate_report(image_bytes, selected_vlm, max_length=100):
"""Generates a report/caption for the given image bytes using Swin-T5."""
global swin_t5_model, swin_t5_tokenizer, transform
# Ensure components are loaded (attempt to load if missing)
if swin_t5_model is None or swin_t5_tokenizer is None or transform is None:
load_swin_t5_model_components()
if swin_t5_model is None or swin_t5_tokenizer is None or transform is None:
raise RuntimeError("Swin-T5 model components failed to load.")
if selected_vlm != "swin_t5_chexpert":
return "Error: Selected VLM is not supported."
try:
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
input_image = transform(image).unsqueeze(0).to(DEVICE)
# Perform inference
with torch.no_grad():
swin_outputs = swin_t5_model.swin(input_image, return_dict=True)
img_feats = swin_outputs.last_hidden_state
img_feats_proj = swin_t5_model.img_proj(img_feats)
encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)
generated_ids = swin_t5_model.t5.generate(
encoder_outputs=encoder_outputs,
max_length=max_length,
num_beams=4,
early_stopping=True
)
report = swin_t5_tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return report
except Exception as e:
print(f"Error during Swin-T5 report generation: {e}")
print(traceback.format_exc())
return f"Error generating report: {e}"
# --- Chat Function (Llama) ---
def generate_chat_response(question, report_context, max_new_tokens=250):
"""Generates a chat response using Llama based on the report context."""
global llama_model, llama_tokenizer
if llama_model is None or llama_tokenizer is None:
return "Chatbot is currently unavailable."
system_prompt = "You are a helpful medical assistant. I'm a medical student, your task is to help me understand the following report."
prompt = (f"{system_prompt}\n\nBased on the following report:\n\n---\n{report_context}\n---\n\n"
f"Please answer this question: {question}\n")
try:
# Tokenize and move to model device
inputs = llama_tokenizer(prompt, return_tensors="pt", truncation=True)
input_ids = inputs["input_ids"].to(next(llama_model.parameters()).device)
attention_mask = inputs.get("attention_mask", None)
if attention_mask is not None:
attention_mask = attention_mask.to(input_ids.device)
with torch.no_grad():
outputs = llama_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
eos_token_id=llama_tokenizer.eos_token_id,
do_sample=True,
temperature=0.6,
top_p=0.9,
pad_token_id=llama_tokenizer.eos_token_id
)
# Returned outputs: (batch, seq_len). We want the newly generated part after the prompt.
generated = outputs[0]
# Remove input prompt tokens to keep only the response
response_ids = generated[input_ids.shape[-1]:]
response_text = llama_tokenizer.decode(response_ids, skip_special_tokens=True).strip()
return response_text
except Exception as e:
print(f"Error during Llama chat generation: {e}")
print(traceback.format_exc())
return f"Error generating chat response: {e}"
# --- Flask Application Setup ---
app = Flask(__name__)
app.secret_key = os.urandom(24)
# Load models when the application starts
print("Loading models on application startup...")
try:
load_swin_t5_model_components()
load_llama_model_components()
print("Model loading complete.")
except Exception as e:
print(f"FATAL ERROR during model loading: {e}")
print(traceback.format_exc())
# Continue with limited functionality (report generation may fail if swin-t5 didn't load)
# Optionally: exit(1)
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def parse_patient_info(filename):
"""
Parses a filename like '00069-34-Frontal-AP-63.0-Male-White.png'
Returns a dictionary with 'view', 'age', 'gender', 'ethnicity'.
Returns None if parsing fails.
"""
try:
base_name = os.path.splitext(filename)[0]
parts = base_name.split('-')
if len(parts) < 5:
print(f"Warning: Filename '{filename}' has fewer parts than expected.")
return None
ethnicity = parts[-1]
gender = parts[-2]
age_str = parts[-3]
try:
age = int(float(age_str))
except ValueError:
print(f"Warning: Could not parse age '{age_str}' from filename '{filename}'.")
return None
view_parts = parts[2:-3]
view = '-'.join(view_parts) if view_parts else "Unknown"
if gender.lower() not in ['male', 'female', 'other', 'unknown']:
print(f"Warning: Unusual gender '{gender}' found in filename '{filename}'.")
return {
'view': view,
'age': age,
'gender': gender.capitalize(),
'ethnicity': ethnicity.capitalize()
}
except IndexError:
print(f"Error parsing filename '{filename}': Index out of bounds.")
return None
except Exception as e:
print(f"Error parsing filename '{filename}': {e}")
print(traceback.format_exc())
return None
# --- Routes ---
@app.route('/', methods=['GET'])
def index():
chatbot_available = bool(llama_model and llama_tokenizer)
return render_template('index.html', chatbot_available=chatbot_available)
@app.route('/predict', methods=['POST'])
def predict():
chatbot_available = bool(llama_model and llama_tokenizer)
patient_info = None
if 'image' not in request.files:
flash('No image file part in the request.', 'danger')
return redirect(url_for('index'))
file = request.files['image']
vlm_choice = request.form.get('vlm_choice', 'swin_t5_chexpert')
try:
max_length = int(request.form.get('max_length', 100))
if not (10 <= max_length <= 512):
raise ValueError("Max length must be between 10 and 512.")
except ValueError as e:
flash(f'Invalid Max Length value: {e}', 'danger')
return redirect(url_for('index'))
if file.filename == '':
flash('No image selected for uploading.', 'warning')
return redirect(url_for('index'))
if file and allowed_file(file.filename):
try:
image_bytes = file.read()
original_filename = file.filename
patient_info = parse_patient_info(original_filename)
if patient_info:
print(f"Parsed Patient Info: {patient_info}")
else:
print(f"Could not parse patient info from filename: {original_filename}")
report = generate_report(image_bytes, vlm_choice, max_length)
if isinstance(report, str) and report.startswith("Error"):
flash(f'Report Generation Failed: {report}', 'danger')
image_data = base64.b64encode(image_bytes).decode('utf-8')
return render_template('index.html',
report=None,
image_data=image_data,
patient_info=patient_info,
chatbot_available=chatbot_available)
image_data = base64.b64encode(image_bytes).decode('utf-8')
return render_template('index.html',
report=report,
image_data=image_data,
patient_info=patient_info,
chatbot_available=chatbot_available)
except FileNotFoundError as fnf_error:
flash(f'Model file not found: {fnf_error}. Please check server configuration.', 'danger')
print(f"Model file error: {fnf_error}\n{traceback.format_exc()}")
return redirect(url_for('index'))
except RuntimeError as rt_error:
flash(f'Model loading error: {rt_error}. Please check server logs.', 'danger')
print(f"Runtime error during prediction: {rt_error}\n{traceback.format_exc()}")
return redirect(url_for('index'))
except Exception as e:
flash(f'An unexpected error occurred during prediction: {e}', 'danger')
print(f"Error during prediction: {e}\n{traceback.format_exc()}")
return redirect(url_for('index'))
else:
flash('Invalid image file type. Allowed types: png, jpg, jpeg.', 'danger')
return redirect(url_for('index'))
@app.route('/chat', methods=['POST'])
def chat():
if not llama_model or not llama_tokenizer:
return jsonify({"answer": "Chatbot is not available."}), 503
data = request.get_json()
if not data or 'question' not in data or 'report_context' not in data:
return jsonify({"error": "Missing question or report context"}), 400
question = data['question']
report_context = data['report_context']
try:
answer = generate_chat_response(question, report_context)
return jsonify({"answer": answer})
except Exception as e:
print(f"Error in /chat endpoint: {e}")
print(traceback.format_exc())
return jsonify({"error": "Failed to generate chat response"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=False)