|
|
from flask import Flask, request, render_template, session, url_for, redirect, jsonify
|
|
|
from flask_session import Session
|
|
|
from langchain_core.messages import HumanMessage, AIMessage
|
|
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
|
import os
|
|
|
import logging
|
|
|
import re
|
|
|
import traceback
|
|
|
import base64
|
|
|
import shutil
|
|
|
import zipfile
|
|
|
from dotenv import load_dotenv
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
from api import api_bp
|
|
|
from src.medical_swarm import run_medical_swarm
|
|
|
from src.utils import load_rag_system, standardize_query, get_standalone_question, parse_agent_response, markdown_bold_to_html
|
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
|
def setup_database():
|
|
|
"""Downloads and unzips the ChromaDB folder from Hugging Face Datasets."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DATASET_REPO_ID = "WanIrfan/atlast-db"
|
|
|
|
|
|
|
|
|
ZIP_FILENAME = "chroma_db.zip"
|
|
|
DB_DIR = "chroma_db"
|
|
|
|
|
|
if os.path.exists(DB_DIR) and os.listdir(DB_DIR):
|
|
|
logger.info("β
Database directory already exists. Skipping download.")
|
|
|
return
|
|
|
|
|
|
logger.info(f"π₯ Downloading database from HF Hub: {DATASET_REPO_ID}")
|
|
|
try:
|
|
|
zip_path = hf_hub_download(
|
|
|
repo_id=DATASET_REPO_ID,
|
|
|
filename=ZIP_FILENAME,
|
|
|
repo_type="dataset",
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
logger.info(f"π¦ Unzipping database from {zip_path}...")
|
|
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
|
|
zip_ref.extractall(".")
|
|
|
|
|
|
logger.info("β
Database setup complete!")
|
|
|
|
|
|
|
|
|
if os.path.exists(zip_path):
|
|
|
os.remove(zip_path)
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"β CRITICAL ERROR setting up database: {e}", exc_info=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setup_database()
|
|
|
|
|
|
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
app.secret_key = os.urandom(24)
|
|
|
|
|
|
|
|
|
app.config["SESSION_PERMANENT"] = False
|
|
|
app.config["SESSION_TYPE"] = "filesystem"
|
|
|
Session(app)
|
|
|
|
|
|
google_api_key = os.getenv("GOOGLE_API_KEY")
|
|
|
if not google_api_key:
|
|
|
logger.warning("β οΈ GOOGLE_API_KEY not found in environment variables. LLM calls will fail.")
|
|
|
else:
|
|
|
logger.info("GOOGLE_API_KEY loaded successfully.")
|
|
|
|
|
|
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0.05, google_api_key=google_api_key)
|
|
|
|
|
|
|
|
|
logger.info("π Starting Multi-Domain AI Assistant...")
|
|
|
try:
|
|
|
rag_systems = {
|
|
|
'medical': load_rag_system(collection_name="medical_csv_Agentic_retrieval", domain="medical"),
|
|
|
'islamic': load_rag_system(collection_name="islamic_texts_Agentic_retrieval", domain="islamic"),
|
|
|
'insurance': load_rag_system(collection_name="etiqa_Agentic_retrieval", domain="insurance")
|
|
|
}
|
|
|
except Exception as e:
|
|
|
logger.error(f"β FAILED to load RAG systems. Check database path and permissions. Error: {e}", exc_info=True)
|
|
|
rag_systems = {'medical': None, 'islamic': None, 'insurance': None}
|
|
|
|
|
|
|
|
|
app.rag_systems = rag_systems
|
|
|
app.llm = llm
|
|
|
|
|
|
|
|
|
app.register_blueprint(api_bp)
|
|
|
logger.info(f"β
API Blueprint registered. API endpoints are now available under /api")
|
|
|
|
|
|
|
|
|
logger.info("\nπ SYSTEM STATUS:")
|
|
|
for domain, system in rag_systems.items():
|
|
|
status = "β
Ready" if system else "β Failed (DB missing?)"
|
|
|
logger.info(f" {domain}: {status}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/")
|
|
|
def homePage():
|
|
|
|
|
|
session.pop('medical_history', None)
|
|
|
session.pop('islamic_history', None)
|
|
|
session.pop('insurance_history', None)
|
|
|
session.pop('current_medical_document', None)
|
|
|
return render_template("homePage.html")
|
|
|
|
|
|
|
|
|
@app.route("/medical", methods=["GET", "POST"])
|
|
|
def medical_page():
|
|
|
|
|
|
if request.method == "GET":
|
|
|
|
|
|
latest_response = session.pop('latest_medical_response', {})
|
|
|
|
|
|
answer = latest_response.get('answer', "")
|
|
|
thoughts = latest_response.get('thoughts', "")
|
|
|
validation = latest_response.get('validation', "")
|
|
|
source = latest_response.get('source', "")
|
|
|
|
|
|
|
|
|
if not latest_response and 'medical_history' not in session:
|
|
|
session.pop('current_medical_document', None)
|
|
|
|
|
|
return render_template("medical_page.html",
|
|
|
history=session.get('medical_history', []),
|
|
|
answer=answer,
|
|
|
thoughts=thoughts,
|
|
|
validation=validation,
|
|
|
source=source)
|
|
|
|
|
|
|
|
|
answer, thoughts, validation, source = "", "", "", ""
|
|
|
history = session.get('medical_history', [])
|
|
|
current_medical_document = session.get('current_medical_document', "")
|
|
|
|
|
|
|
|
|
try:
|
|
|
query=standardize_query(request.form.get("query", ""))
|
|
|
has_image = 'image' in request.files and request.files['image'].filename
|
|
|
has_document = 'document' in request.files and request.files['document'].filename
|
|
|
has_query = request.form.get("query") or request.form.get("question", "")
|
|
|
|
|
|
logger.info(f"POST request received: has_image={has_image}, has_document={has_document}, has_query={has_query}")
|
|
|
|
|
|
if has_document:
|
|
|
|
|
|
logger.info("Processing Scenario 3: Query + Document with Medical Swarm")
|
|
|
file = request.files['document']
|
|
|
try:
|
|
|
|
|
|
document_text = file.read().decode("utf-8")
|
|
|
session['current_medical_document'] = document_text
|
|
|
current_medical_document = document_text
|
|
|
except UnicodeDecodeError:
|
|
|
answer = "Error: Could not decode the uploaded document. Please ensure it is a valid text or PDF file."
|
|
|
logger.error("Scenario 3: Document decode error")
|
|
|
thoughts = traceback.format_exc()
|
|
|
|
|
|
swarm_answer = run_medical_swarm(current_medical_document, query)
|
|
|
answer = markdown_bold_to_html(swarm_answer)
|
|
|
|
|
|
history.append(HumanMessage(content=f"[Document Uploaded] Query: '{query}'"))
|
|
|
history.append(AIMessage(content=swarm_answer))
|
|
|
thoughts = "Swarm analysis complete. The process is orchestrated and does not use the ReAct thought process. You can now ask follow-up questions."
|
|
|
source= "Medical Swarm"
|
|
|
validation = (True, "Swarm output generated.")
|
|
|
|
|
|
elif has_image :
|
|
|
|
|
|
logger.info("Processing Multimodal RAG: Query + Image")
|
|
|
|
|
|
file = request.files['image']
|
|
|
upload_dir = "Uploads"
|
|
|
os.makedirs(upload_dir, exist_ok=True)
|
|
|
image_path = os.path.join(upload_dir, file.filename)
|
|
|
|
|
|
try:
|
|
|
file.save(image_path)
|
|
|
file.close()
|
|
|
|
|
|
with open(image_path, "rb") as img_file:
|
|
|
img_data = base64.b64encode(img_file.read()).decode("utf-8")
|
|
|
|
|
|
|
|
|
vision_prompt = f"Analyze this image and identify the main subject in a single, concise sentence. The user's query is: '{query}'"
|
|
|
message = HumanMessage(content=[
|
|
|
{"type": "text", "text": vision_prompt},
|
|
|
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_data}"}
|
|
|
])
|
|
|
vision_response = llm.invoke([message])
|
|
|
visual_prediction = vision_response.content
|
|
|
logger.info(f"Vision Prediction: {visual_prediction}")
|
|
|
|
|
|
|
|
|
enhanced_query = (
|
|
|
f'User Query: "{query}" '
|
|
|
f'Context from an image provided by the LLM: "{visual_prediction}" '
|
|
|
'Based on the user\'s query and the context from LLM, provide a comprehensive answer.'
|
|
|
)
|
|
|
logger.info(f"Enhanced query : {enhanced_query}")
|
|
|
|
|
|
agent = rag_systems['medical']
|
|
|
if not agent: raise Exception("Medical RAG system is not loaded.")
|
|
|
response_dict = agent.answer(enhanced_query, chat_history=history)
|
|
|
answer, thoughts, validation, source = parse_agent_response(response_dict)
|
|
|
history.append(HumanMessage(content=query))
|
|
|
history.append(AIMessage(content=answer))
|
|
|
|
|
|
finally:
|
|
|
if os.path.exists(image_path):
|
|
|
try:
|
|
|
os.remove(image_path)
|
|
|
logger.info(f"Successfully deleted temporary image file: {image_path}")
|
|
|
except PermissionError as e:
|
|
|
logger.warning(f"Could not remove {image_path} after processing. "
|
|
|
f"File may be locked by another process. Error: {e}")
|
|
|
|
|
|
elif query:
|
|
|
|
|
|
history_for_agent = history
|
|
|
if current_medical_document:
|
|
|
logger.info("Processing Follow-up Query for Document")
|
|
|
history_for_agent = [HumanMessage(content=f"We are discussing this document:\n{current_medical_document}")] + history
|
|
|
else:
|
|
|
logger.info("Processing Text RAG query for Medical domain")
|
|
|
|
|
|
logger.info(f"Original Query: '{query}'")
|
|
|
print(f"π Using chat history with {len(history)} previous messages to create standalone query")
|
|
|
standalone_query = get_standalone_question(query, history_for_agent,llm)
|
|
|
logger.info(f"Standalone Query: '{standalone_query}'")
|
|
|
|
|
|
agent = rag_systems['medical']
|
|
|
if not agent: raise Exception("Medical RAG system is not loaded.")
|
|
|
response_dict = agent.answer(standalone_query, chat_history=history_for_agent)
|
|
|
answer, thoughts, validation, source = parse_agent_response(response_dict)
|
|
|
|
|
|
history.append(HumanMessage(content=query))
|
|
|
history.append(AIMessage(content=answer))
|
|
|
|
|
|
else:
|
|
|
raise ValueError("No query or file provided.")
|
|
|
except Exception as e:
|
|
|
logger.error(f"Error on /medical page: {e}", exc_info=True)
|
|
|
answer = f"An error occurred: {e}"
|
|
|
thoughts = traceback.format_exc()
|
|
|
|
|
|
|
|
|
session['medical_history'] = history
|
|
|
session['latest_medical_response'] = {
|
|
|
'answer': answer,
|
|
|
'thoughts': thoughts,
|
|
|
'validation': validation,
|
|
|
'source': source
|
|
|
}
|
|
|
session.modified = True
|
|
|
|
|
|
logger.debug(f"Redirecting after saving latest response.")
|
|
|
return redirect(url_for('medical_page'))
|
|
|
|
|
|
@app.route("/medical/clear")
|
|
|
def clear_medical_chat():
|
|
|
session.pop('medical_history', None)
|
|
|
session.pop('current_medical_document', None)
|
|
|
logger.info("Medical chat history cleared.")
|
|
|
return redirect(url_for('medical_page'))
|
|
|
|
|
|
@app.route("/islamic", methods=["GET", "POST"])
|
|
|
def islamic_page():
|
|
|
|
|
|
|
|
|
if request.method == "GET":
|
|
|
|
|
|
latest_response = session.pop('latest_islamic_response', {})
|
|
|
|
|
|
answer = latest_response.get('answer', "")
|
|
|
thoughts = latest_response.get('thoughts', "")
|
|
|
validation = latest_response.get('validation', "")
|
|
|
source = latest_response.get('source', "")
|
|
|
|
|
|
|
|
|
if not latest_response and 'islamic_history' not in session:
|
|
|
session.pop('islamic_history', None)
|
|
|
|
|
|
return render_template("islamic_page.html",
|
|
|
history=session.get('islamic_history', []),
|
|
|
answer=answer,
|
|
|
thoughts=thoughts,
|
|
|
validation=validation,
|
|
|
source=source)
|
|
|
|
|
|
|
|
|
answer, thoughts, validation, source = "", "", "", ""
|
|
|
history = session.get('islamic_history', [])
|
|
|
|
|
|
|
|
|
try:
|
|
|
query = standardize_query(request.form.get("query", ""))
|
|
|
has_image = 'image' in request.files and request.files['image'].filename
|
|
|
|
|
|
final_query = query
|
|
|
|
|
|
if has_image:
|
|
|
logger.info("Processing Multimodal RAG query for Islamic domain")
|
|
|
|
|
|
file = request.files['image']
|
|
|
|
|
|
upload_dir = "Uploads"
|
|
|
os.makedirs(upload_dir, exist_ok=True)
|
|
|
image_path = os.path.join(upload_dir, file.filename)
|
|
|
|
|
|
try:
|
|
|
file.save(image_path)
|
|
|
file.close()
|
|
|
|
|
|
with open(image_path, "rb") as img_file:
|
|
|
img_base64 = base64.b64encode(img_file.read()).decode("utf-8")
|
|
|
|
|
|
vision_prompt = f"Analyze this image's main subject. User's query is: '{query}'"
|
|
|
message = HumanMessage(content=[{"type": "text", "text": vision_prompt}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_base64}"}])
|
|
|
visual_prediction = llm.invoke([message]).content
|
|
|
|
|
|
enhanced_query = (
|
|
|
f'User Query: "{query}" '
|
|
|
f'Context from an image provided by the LLM: "{visual_prediction}" '
|
|
|
'Based on the user\'s query and the context from LLM, provide a comprehensive answer.'
|
|
|
)
|
|
|
logger.info(f"Create enchanced query : {enhanced_query}")
|
|
|
|
|
|
final_query = enhanced_query
|
|
|
|
|
|
finally:
|
|
|
if os.path.exists(image_path):
|
|
|
try:
|
|
|
os.remove(image_path)
|
|
|
logger.info(f"Successfully cleaned up {image_path}")
|
|
|
except PermissionError as e:
|
|
|
logger.warning(f"Could not remove {image_path} after processing. "
|
|
|
f"File may be locked. Error: {e}")
|
|
|
|
|
|
elif query:
|
|
|
logger.info("Processing Text RAG query for Islamic domain")
|
|
|
standalone_query = get_standalone_question(query, history,llm)
|
|
|
logger.info(f"Original Query: '{query}'")
|
|
|
print(f"π Using chat history with {len(history)} previous messages to create standalone query")
|
|
|
logger.info(f"Standalone Query: '{standalone_query}'")
|
|
|
final_query = standalone_query
|
|
|
|
|
|
if not final_query:
|
|
|
raise ValueError("No query or file provided.")
|
|
|
|
|
|
agent = rag_systems['islamic']
|
|
|
if not agent: raise Exception("Islamic RAG system is not loaded.")
|
|
|
response_dict = agent.answer(final_query, chat_history=history)
|
|
|
answer, thoughts , validation, source = parse_agent_response(response_dict)
|
|
|
history.append(HumanMessage(content=query))
|
|
|
history.append(AIMessage(content=answer))
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Error on /islamic page: {e}", exc_info=True)
|
|
|
answer = f"An error occurred: {e}"
|
|
|
thoughts = traceback.format_exc()
|
|
|
|
|
|
|
|
|
session['islamic_history'] = history
|
|
|
session['latest_islamic_response'] = {
|
|
|
'answer': answer,
|
|
|
'thoughts': thoughts,
|
|
|
'validation': validation,
|
|
|
'source': source
|
|
|
}
|
|
|
session.modified = True
|
|
|
|
|
|
logger.debug(f"Redirecting after saving latest response.")
|
|
|
return redirect(url_for('islamic_page'))
|
|
|
|
|
|
@app.route("/islamic/clear")
|
|
|
def clear_islamic_chat():
|
|
|
session.pop('islamic_history', None)
|
|
|
logger.info("Islamic chat history cleared.")
|
|
|
return redirect(url_for('islamic_page'))
|
|
|
|
|
|
@app.route("/insurance", methods=["GET", "POST"])
|
|
|
def insurance_page():
|
|
|
if request.method == "GET" :
|
|
|
latest_response = session.pop('latest_insurance_response',{})
|
|
|
|
|
|
answer = latest_response.get('answer', "")
|
|
|
thoughts = latest_response.get('thoughts', "")
|
|
|
validation = latest_response.get('validation', "")
|
|
|
source = latest_response.get('source', "")
|
|
|
|
|
|
if not latest_response and 'insurance_history' not in session:
|
|
|
session.pop('insurance_history', None)
|
|
|
|
|
|
return render_template("insurance_page.html",
|
|
|
history=session.get('insurance_history', []),
|
|
|
answer=answer,
|
|
|
thoughts=thoughts,
|
|
|
validation=validation,
|
|
|
source=source)
|
|
|
|
|
|
|
|
|
answer, thoughts, validation, source = "", "", "", ""
|
|
|
history = session.get('insurance_history', [])
|
|
|
|
|
|
try:
|
|
|
query = standardize_query(request.form.get("query", ""))
|
|
|
|
|
|
if query:
|
|
|
logger.info("Processing Text RAG query for Insurance domain")
|
|
|
standalone_query = get_standalone_question(query, history, llm)
|
|
|
logger.info(f"Original Query: '{query}'")
|
|
|
logger.info(f"Standalone Query: '{standalone_query}'")
|
|
|
|
|
|
agent = rag_systems['insurance']
|
|
|
if not agent: raise Exception("Insurance RAG system is not loaded.")
|
|
|
response_dict = agent.answer(standalone_query, chat_history=history)
|
|
|
answer, thoughts, validation, source = parse_agent_response(response_dict)
|
|
|
|
|
|
history.append(HumanMessage(content=query))
|
|
|
history.append(AIMessage(content=answer))
|
|
|
else:
|
|
|
raise ValueError("No query provided.")
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Error on /insurance page: {e}", exc_info=True)
|
|
|
answer = f"An error occurred: {e}"
|
|
|
thoughts = traceback.format_exc()
|
|
|
|
|
|
session['insurance_history'] = history
|
|
|
session['latest_insurance_response'] = {
|
|
|
'answer': answer,
|
|
|
'thoughts': thoughts,
|
|
|
'validation': validation,
|
|
|
'source': source
|
|
|
}
|
|
|
session.modified = True
|
|
|
|
|
|
logger.debug(f"Redirecting after saving latest response.")
|
|
|
return redirect(url_for('insurance_page'))
|
|
|
|
|
|
@app.route("/insurance/clear")
|
|
|
def clear_insurance_chat():
|
|
|
session.pop('insurance_history', None)
|
|
|
logger.info("Insurance chat history cleared.")
|
|
|
return redirect(url_for('insurance_page'))
|
|
|
|
|
|
@app.route("/about", methods=["GET"])
|
|
|
def about():
|
|
|
return render_template("about.html")
|
|
|
|
|
|
@app.route('/metrics/<domain>')
|
|
|
def get_metrics(domain):
|
|
|
"""API endpoint to get metrics for a specific domain."""
|
|
|
try:
|
|
|
if domain == "medical" and rag_systems['medical']:
|
|
|
stats = rag_systems['medical'].metrics_tracker.get_stats()
|
|
|
elif domain == "islamic" and rag_systems['islamic']:
|
|
|
stats = rag_systems['islamic'].metrics_tracker.get_stats()
|
|
|
elif domain == "insurance" and rag_systems['insurance']:
|
|
|
stats = rag_systems['insurance'].metrics_tracker.get_stats()
|
|
|
elif not rag_systems.get(domain):
|
|
|
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
|
|
|
else:
|
|
|
return jsonify({"error": "Invalid domain"}), 400
|
|
|
|
|
|
return jsonify(stats)
|
|
|
except Exception as e:
|
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
@app.route('/metrics/reset/<domain>', methods=['POST'])
|
|
|
def reset_metrics(domain):
|
|
|
"""Reset metrics for a domain (useful for testing)."""
|
|
|
try:
|
|
|
if domain == "medical" and rag_systems['medical']:
|
|
|
rag_systems['medical'].metrics_tracker.reset_metrics()
|
|
|
elif domain == "islamic" and rag_systems['islamic']:
|
|
|
rag_systems['islamic'].metrics_tracker.reset_metrics()
|
|
|
elif domain == "insurance" and rag_systems['insurance']:
|
|
|
rag_systems['insurance'].metrics_tracker.reset_metrics()
|
|
|
elif not rag_systems.get(domain):
|
|
|
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
|
|
|
else:
|
|
|
return jsonify({"error": "Invalid domain"}), 400
|
|
|
|
|
|
return jsonify({"success": True, "message": f"Metrics reset for {domain}"})
|
|
|
except Exception as e:
|
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
logger.info("Starting Flask app for deployment testing...")
|
|
|
|
|
|
app.run(host="0.0.0.0", port=7860, debug=False) |